# initializing Q matrix
Q = P = matrix(1/4,nrow=25,ncol=4) #
# defining deterministic transition matrix
north=c(2:25,25)
north[ c(5,10,15,20,25)]=c(5,10,15,20,25)
east=c(6:25,21:25)
west=c(1:5,1:20)
south=c(1,1:24)
south[ c(1,6,11,16,21)]=c(1,6,11,16,21)
trM=cbind(north,east,south,west)
trM[10,]=6
trM[20,]=18
R=matrix(0,nrow=25,ncol=4)
R[which(trM==1:25)]=-1
R[10,]=10
R[20,]=5
nRep=1000; gamma=0.9; P = 0.25
for (i_rep in 1:nRep) {
Q.old = Q
for (i_state in 1:25) {
for (i_act in 1:4){
Q[i_state, i_act]=R[i_state, i_act]+gamma * P * sum(Q.old[trM[i_state,i_act]])
}
}
}
2019年度 データ解析基礎論B W06
x.temp = 0:9
mass= matrix(dbinom(x.temp,9,0.5),nrow=1)
colnames(mass) <- paste(0:9)
barplot(mass)
sum(dbinom(7:9,9,0.5))
2*(0.5-pnorm(750,800,40))
pnorm(700,800,40)
qnorm(c(0.025, 0.975),800,40)
qnorm(0.99,800,40)
zA=(165-150)/(sqrt(15^2/10))
1-pnorm(zA)
(1-pnorm(zA))*2
dat<-read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
mean.M <-mean(dat$h[dat$gender=="M"])
sigma = 10
n.M = length(dat$h[dat$gender=="M"])
z.value=(mean.M-171)/(sqrt(sigma))
ssize = c(24,25,26,23.5,25,27,24,22,27.5,28)
ssize.mean = mean(ssize)
ssize.var = var(ssize)
N = 10
t.value=(ssize.mean-24)/(sqrt(ssize.var/N))
(1-pt(abs(t.value),df=9))*2
t.test(ssize, mu=24)
2019 データ解析基礎論A DAA04
dat<- read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
plot(dat$shoesize, dat$h, main="Relationship b/w shoesize and height",
xlab = "shoesize", ylab="height", pch=19, col="red")
txt = paste("r =", round(cor(dat$shoesize,dat$h), 4))
text(22, 175, txt, cex = 1.5)
abline(h = mean(dat$h), col='blue');
abline(v = mean(dat$shoesize), col='darkgreen');
text(x = 21, y = mean(dat$h)+3,
paste("mean height =", round(mean(dat$h),2)),
col="blue",adj = 0)
text(x = mean(dat$shoesize)+0.2, y = 145,
paste("mean shoesize =", round(mean(dat$shoesize),2)),
col="darkgreen",adj = 0)
abline(lm(dat$h~dat$shoesize), lty=2, lwd=2)
plot(dat[dat$gender=='F',]$shoesize, dat[dat$gender=='F',]$h,
main="Relationship b/w shoesize and height", xlab='shoesize', ylab='height',
cex.lab=1.5, pch=19, col='blue', xlim=c(20,29), ylim=c(140,190))
plot(dat[dat$gender=='M',]$shoesize, dat[dat$gender=='M',]$h,
main="Relationship b/w shoesize and height", xlab='shoesize', ylab='height',
cex.lab=1.5, pch=15, col='green', xlim=c(20,29), ylim=c(140,190))
plot(dat[dat$gender=='F',]$shoesize, dat[dat$gender=='F',]$h,
main="Relationship b/w shoesize and height", xlab='shoesize', ylab='height',
cex.lab=1.5, pch=19, col='blue', xlim=c(20,29), ylim=c(140,190))
points(dat[dat$gender=='M',]$shoesize,dat[dat$gender=='M',]$h,
pch = 15, col = 'green')
legend("topleft", c('Female','Male'), pch =c(19,15),
col = c('blue','green'), cex = 1.5)
dat<-read.csv("http://www.matsuka.info/data_folder/tdkReg01.csv")
plot(dat, pch=20, col='blue')
dat.pca<-read.table("http://www.matsuka.info/data_folder/tdkPCA01.txt")
plot(dat.pca, pch = rownames(dat.pca), cex = 1.7, col = "blue")
dat<-read.table("http://www.matsuka.info/data_folder/aov01.txt",header=T)
summary(dat)
dat.meter = dat[,1:2]*0.01
dat.h.ext5 = dat$h+5
hANDshoe = dat$h+dat$shoesize
dat.h.meter.ext5 = dat$h*0.01+0.05
院:認知情報解析学
source("http://www.matsuka.info/univ/course_folder/cuUtil02.R")
dat<-read.csv('http://www.matsuka.info/data_folder/tdkCFA.csv')
dat.fa1 <- factanal(dat,1)
dat.fa2 <- factanal(dat,2)
dat.fa3 <- factanal(dat,3)
dat.fa4 <- factanal(dat,4)
install.packages('sem')
library(sem)
model01=cfa(reference.indicator=FALSE)
F1:extrovert,cheerful, leadership, antisocial, talkative, motivated, hesitance, popularity
mod1<-sem(model01, data = dat)
model02=cfa(reference.indicator=FALSE)
F1: extrovert, leadership, motivated, hesitance
F2: cheerful, antisocial, talkative, popularity
mod2<-sem(model02, data = dat)
強化学習 方策の比較1
# Qが最大のactionを選択
max.Q <- function(Q){
max.a = max(Q)
max.idx = which(Q == max.a)
if (length(max.idx)>1){
max.idx = sample(max.idx, 1)
}
return(max.idx)
}
# greedy方策
greedy <- function(n.trial, Q.star, N){
Q = Q.cum = count = rep(0, N)
rew.earned = rep(0, n.trial)
for (i.trial in 1:n.trial){
act.idx = max.Q(Q)
r.t = rnorm(1, mean = Q.star[act.idx], sd = 1)
Q.cum[act.idx] = Q.cum[act.idx] + r.t
count[act.idx] = count[act.idx] + 1
Q[act.idx] = Q.cum[act.idx] / count[act.idx]
rew.earned[i.trial] = r.t
}
return(list(Q = Q, rew.earned = rew.earned))
}
# epsilon greedy方策
# epsilon = 0の場合はgreedy方策と同等
eps.greedy <- function(n.trial, Q.star, N, epsilon){
Q = Q.cum = count = rep(0, N)
rew.earned = rep(0, n.trial)
for (i.trial in 1:n.trial){
if (runif(1) < epsilon){
act.idx = sample(1:N, 1)
} else {
act.idx = max.Q(Q)
}
r.t = rnorm(1, mean = Q.star[act.idx], sd = 1)
Q.cum[act.idx] = Q.cum[act.idx] + r.t
count[act.idx] = count[act.idx] + 1
Q[act.idx] = Q.cum[act.idx] / count[act.idx]
rew.earned[i.trial] = r.t
}
return(list(Q = Q, rew.earned = rew.earned))
}
# n.rep回繰り返す関数
comp.eps.greedy <- function(n.trial, n.rep, N, epsilon){
rew.history = matrix(0, nrow = n.trial, ncol = n.rep)
for (i.rep in 1:n.rep){
Q.star = rnorm(N, mean = 0, sd = 1);
res = eps.greedy(n.trial, Q.star, N, epsilon)
rew.history[ , i.rep] = res$rew.earned
}
return(rew.history)
}
# 実行
EG.000 = comp.eps.greedy(1000, 1000, 10, 0.000)
EG.001 = comp.eps.greedy(1000, 1000, 10, 0.001)
EG.010 = comp.eps.greedy(1000, 1000, 10, 0.010)
EG.100 = comp.eps.greedy(1000, 1000, 10, 0.100)
EG.150 = comp.eps.greedy(1000, 1000, 10, 0.150)
# 結果の可視化
plot(rowMeans(EG.000), type="l", ylab="Average Reward", xlab="Trial",
ylim = c(0,2))
lines(rowMeans(EG.001),col=2)
lines(rowMeans(EG.010),col=3)
lines(rowMeans(EG.100),col=4)
lines(rowMeans(EG.150),col=5)
legend("bottomright",
c("epsilon = 0.000",
"epsilon = 0.001",
"epsilon = 0.010",
"epsilon = 0.100",
"epsilon = 0.150"),
col=1:5,lwd=2 )
# softmax
softmax <- function(n.trial, Q.star, N, tau){
Q = Q.cum = count = rep(0, N)
rew.earned = rep(0, n.trial)
for (i.trial in 1:n.trial){
p = exp(Q*tau)/sum(exp(Q*tau))
act.idx = sample(1:N, 1, prob = p)
r.t = rnorm(1, mean = Q.star[act.idx], sd = 1)
Q.cum[act.idx] = Q.cum[act.idx] + r.t
count[act.idx] = count[act.idx] + 1
Q[act.idx] = Q.cum[act.idx] / count[act.idx]
rew.earned[i.trial] = r.t
}
return(list(Q = Q, rew.earned = rew.earned))
}
comp.softmax <- function(n.trial, n.rep, N, tau){
rew.history = matrix(0, nrow = n.trial, ncol = n.rep)
for (i.rep in 1:n.rep){
Q.star = rnorm(N, mean = 0, sd = 1);
res = softmax(n.trial, Q.star, N, tau)
rew.history[ , i.rep] = res$rew.earned
}
return(rew.history)
}
# 実行
EG.000 = comp.eps.greedy(1000, 1000, 10, 0.000)
EG.010 = comp.eps.greedy(1000, 1000, 10, 0.010)
EG.100 = comp.eps.greedy(1000, 1000, 10, 0.100)
SM.10 = comp.softmax(1000,1000,10,10)
SM.03 = comp.softmax(1000,1000,10,3)
# 結果の可視化
plot(rowMeans(EG.000), type="l", ylab="Average Reward", xlab="Trial",
ylim = c(0,2))
lines(rowMeans(EG.010),col=2)
lines(rowMeans(EG.100),col=3)
lines(rowMeans(SM.10),col=4)
lines(rowMeans(SM.03),col=5)
legend("bottomright",
c("epsilon = 0.000",
"epsilon = 0.010",
"epsilon = 0.100",
"tau = 10",
"tau = 3"),
col=1:5,lwd=2 )
# epsilon greedy (2nd version)
eps.greedy2 <- function(n.trial, Q.star, N, epsilon, lr, init.Q){
Q = rep(init.Q, N)
rew.earned = rep(0, n.trial)
for (i.trial in 1:n.trial){
if (runif(1) < epsilon){
act.idx = sample(1:N, 1)
} else {
act.idx = max.Q(Q)
}
r.t = rnorm(1, mean = Q.star[act.idx], sd = 1)
Q[act.idx] = Q[act.idx] + lr*(r.t - Q[act.idx])
rew.earned[i.trial] = r.t
}
return(list(Q = Q, rew.earned = rew.earned))
}
2019データ解析基礎論A DAA03可視化2
v1 = seq(-3,3,0.1)
v2 = v1^2
plot(v1, v2, col = "blue", type = "o", lty = 2, pch = 19,
cex.lab = 1.5, lwd = 3, main = "Y=X*X", xlab = "X",
ylab="X*X", xlim=c(-3.5,3.5), ylim=c(-0.5, 10))
# histogram
dat<- read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
hist(dat$h)
hist(dat$h, breaks = 20, main = "Histogram of Height",
xlab = "Height", col = 'blue', xlim = c(140, 190))
dens<-density(dat$h);
hist(dat$h, main = "Histogram of Height", xlab = "Height",
xlim = c(140,190), probability = T)
lines(dens, lwd = 2, col = "red", lty=2)
plot(v1, v2, col = "blue", type = "l", pch = 19, cex.lab = 1.5,
lwd = 3, xlab = "X", ylab="f(X)", xlim=c(-3.5,3.5), ylim=c(-0.5, 10))
lines(v1, v1^3, col='red',lwd = 3)
legend("bottomright", c("x^2","x^3"), col=c('blue','red'), lwd=2)
legend(-3,0.5, c("x^2","x^3"), col=c('blue','red'), lwd=2)
boxplot(dat$h,main="Boxplot of Height", ylab="Height", col='cyan', ylim=c(140,190))
boxplot(dat$h,main="Boxplot of Height", xlab="Height", col="orange", horizontal=T)
boxplot(dat$h ~ dat$gender,
main="Distribution of Height by Gender",
ylab="Gender", xlab="Height", col=c('blue','cyan'),
ylim=c(140,190), horizontal=T)
dat<-read.table("http://www.matsuka.info/data_folder/aov01.txt")
boxplot(dat$h ~ dat$gender + dat$affil,
main="Distribution of Height by Gender and Affiliation",
ylab="Gender x Affiliation", xlab="Height",
col=c('blue','cyan','red','magenta'), ylim=c(140,190),horizontal=T)
interaction.plot(dat$gender,
dat$affil,
dat$h,
pch=c(20,20),
col=c("skyblue","orange"),
xlab="gender", ylab="height",
lwd=3,type='b',cex=2,
trace.label="Affiliation")
par(mfrow=c(1,2))
hist(dat[dat$gender=="F",]$h, main="Dist. of Height for Female Participants",
xlab="Height", xlim=c(140,190), probability=T)
dens.F = density(dat[dat$gender=='F',]$h)
lines(dens.F, col='blue',lwd=2)
#2つ目のhistogram
hist(dat[dat$gender=="M",]$h, main="Dist. of Height for Male
Participants", xlab="Height", xlim=c(140,190), probability=T,ylim=c(0,0.08))
dens.M = density(dat[dat$gender=='M',]$h)
lines(dens.M, col='green', lwd=2)
par(mfrow=c(1,1))
plot(dens.F,col='blue',lwd=2, ylab='density', xlim=c(140,190),
main="Dist. of Height by gender",xlab='Height')
lines(dens.M,col='green',lwd=2)
legend("topleft", c('Female','Male'), col=c('blue','green'), cex=1.5,lwd=2)
text(157.5, 0.04, 'Female', col='blue', cex=2)
text(170, 0.04,'Male', col='green', cex=2)
plot(dat$shoesize, dat$h, main="Relationship b/w shoesize and height",
xlab = "shoesize", ylab="height", pch=19, col="red")
txt = paste("r =", round(cor(dat$shoesize,dat$h), 3))
text(22, 175, txt, cex = 1.5)
plot(dat[dat$gender=='F',]$shoesize, dat[dat$gender=='F',]$h,
main="Relationship b/w shoesize and height", xlab='shoesize', ylab='height',
cex.lab=1.5, pch=19, col='blue', xlim=c(20,29), ylim=c(140,190))
lines(dat[dat$gender=='M',]$shoesize,dat[dat$gender=='M',]$h,
type = 'p', pch = 15, col = 'green')
legend("topleft", c('Female','Male'), pch =c(19,15),
col = c('blue','green'), cex = 1.5)
2019 認知情報解析学演習 RL01
set.seed(111)
n.trial = 1000; N = 10; sigma = 1
Q.star = runif(N); Q = rep(0, N)
count = rep(0,N); Q.cum = rep(0, N)
rew.earned = rep(0,n.trial)
### playing slot-machine
for (i.trial in 1:n.trial){
max.a = max(Q)
max.idx = which(Q == max.a)
if (length(max.idx)>1){
max.idx = sample(max.idx, 1)
}
r.t = rnorm(1, Q.star[max.idx], sd = sigma)
Q.cum[max.idx] = Q.cum[max.idx] + r.t
count[max.idx] = count[max.idx] + 1
Q[max.idx] = Q.cum[max.idx] / count[max.idx]
rew.earned[i.trial] = r.t
}
plot(rew.earned,type='l')
Q
2019 データ解析基礎論a DAA02
x<-matrix(1:8, nrow=2)
x<-matrix(1:8, nrow=2,byrow=T)
data01<-data.frame(score = c(2,4,3,4),
dose = c(rep(10,2),rep(100,2)),
condition = rep(c('exp','control'),2))
dat01<-read.csv("http://www.matsuka.info/data_folder/temp_data01.txt",
header=T)
dat02<-read.csv("http://www.matsuka.info/data_folder/temp_data02.txt",
header=T, row.name=1)
dat03<-read.table("http://www.matsuka.info/data_folder/temp_data03.txt",
header=T, row.name=4)
dat<-read.csv("http://www.matsuka.info/data_folder/datWA01.txt",
header=T);
mean(dat$shoesize[dat$gender == "M"])
mean(dat$shoesize[dat$gender == "F"])
mean(dat$shoesize[dat$h > 180])
v1 = seq(-3,3,0.1)
v2 = v1^2
plot(x = v1, y = v2)
plot(v1, v2, col = 'red')
plot(v1, v2, main = "THIS IS THE TITLE", cex.lab = 1.5,
xlab = "Label for X-axis",ylab = "Label for Y-axis")
plot(v1, v2, col = "blue", type = "o", lty = 2, pch = 19,
cex.lab = 1.5, lwd = 3, main = "Y=X*X", xlab = "X",
ylab="X*X", xlim=c(-3.5,3.5), ylim=c(-0.5, 10))
dat<- read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
hist(dat$h)
hist(dat$h, breaks = 20, main = “Histogram of Height”,
xlab = "Height", col = 'blue', xlim = c(140, 190))
dens<-density(dat$h);
hist(dat$h, main = "Histogram of Height", xlab = "Height",
xlim = c(140,190), probability = T)
lines(dens, lwd = 2, col = ‘red’, lty=2)
plot(v1, v2, col = "blue", type = "l",
pch = 19, cex.lab = 1.5, lwd = 3,
xlab = "X", ylab="f(X)",
xlim=c(-3.5,3.5), ylim=c(-0.5, 10))
lines(v1, v1^3, col='red',lwd = 3)
legend("bottomright", c("x^2","x^3"), col=c('blue','red'), lwd=2)
boxplot(dat$h ~ dat$gender,
main="Distribution of Height by Gender",
ylab="Gender", xlab="Height", col=c('blue','cyan'),
ylim=c(140,190), horizontal=T)
interaction.plot(dat$gender,
dat$affil,
dat$h,
pch=c(20,20),
col=c("skyblue","orange"),
xlab="gender", ylab="height",
lwd=3,type='b',cex=2,
trace.label="Affiliation")
hist(dat[dat$gender=='F',]$h,
main="Dist. of Height for Female Participants",
xlab="Height", xlim=c(140,190), probability=T)
dens.F = density(dat[dat$gender=='F',]$h)
lines(dens.F, col='blue',lwd=2)
hist(dat[dat$gender==‘M’,]$h, main=“Dist. of Height for Male
Participants”, xlab=“Height”, xlim=c(140,190),
probability=T,ylim=c(0,0.08))
dens.M = density(dat[dat$gender=='M',]$h)
lines(dens.M, col='green', lwd=2)
plot(dat$shoesize, dat$h,
main="Relationship b/w shoesize and height",
xlab = 'shoesize’, ylab='height’,
pch=19, col="red")
txt = paste("r =",round(cor(dat$shoesize,dat$h), 4))
text(22, 175, txt, cex = 1.5)
abline(h = mean(dat$h), col='blue');
abline(v = mean(dat$shoesize), col='green')
plot(dat[dat$gender=='F',]$shoesize, dat[dat$gender=='F',]$h,
main="Relationship b/w shoesize and height", xlab='shoesize', ylab='height',
cex.lab=1.5, pch=19, col='blue', xlim=c(20,29), ylim=c(140,190))
lines(dat[dat$gender=='M',]$shoesize,dat[dat$gender=='M',]$h,
type = 'p', pch = 15, col = 'green')
legend("topleft", c('Female','Male'), pch =c(19,15),
col = c('blue','green'), cex = 1.5)
2019 データ解析基礎論A DAA01
dat<-data.frame(score=c(78,70,66,76,78,76,88, 76, 76,72,60,72,70,72,84,70),
cond=c(rep('low',8), rep('high',8)))
boxplot(score~cond, col = c("skyblue",'skyblue4'),data=dat)
summary(aov(score ~ cond, data = dat))
dat <- read.csv("http://www.matsuka.info/data_folder/hwsk8-17-6.csv")
plot(ani~otouto, data=dat,pch=20,cex=3,xlab ="score of Otouto", ylab = "score of Ani")
dat.lm <- lm(ani~otouto, data=dat)
abline(dat.lm, col = 'red',lwd = 2.5)
dat<-read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
dat.glm <- glm(gender~shoesize,family="binomial",data=dat)
plot(as.numeric(gender)-1~shoesize,data=dat,pch=20,cex=3,ylab="P(Male)")
cf = coef(dat.glm)
temp.x = seq(20,30,0.1)
y = 1/(1+exp(-1*(cf[1]+temp.x*cf[2])))
lines(temp.x,y,col='cyan',lwd=2)
dat <- read.table("http://www.matsuka.info/data_folder/tdkPCA01.txt")
dat.pca <- princomp(dat)
biplot(dat.pca)
dat<-read.csv("http://matsuka.info/data_folder/tdkClust.csv", header=TRUE, row.names=1)
dat.cluster=hclust(dist(dat),method="average")
plot(dat.cluster,cex=1.5)
data01<-data.frame(score = c(2,4,3,4),
dose = c(rep(10,2),rep(100,2)),
condition = rep(c('exp','control'),2))
dat01<-read.csv("http://www.matsuka.info/data_folder/temp_data01.txt",
header=T)
dat02<-read.csv("http://www.matsuka.info/data_folder/temp_data02.txt",
header=T, row.name=1)
dat03<-read.table("http://www.matsuka.info/data_folder/temp_data03.txt",
header=T, row.name=4)
dat<-read.csv("http://www.matsuka.info/data_folder/datWA01.txt",
header=T);
認知情報解析学演習b
init.RNN <- function(n.uniq,size.hidden){
W.h = matrix(rnorm(size.hidden*size.hidden), nrow = size.hidden)*0.01
W.x = matrix(rnorm(n.uniq*size.hidden), nrow = n.uniq)*0.01
b.h = matrix(rnorm(size.hidden), nrow = 1)*0.01
W.o = matrix(rnorm(n.uniq*size.hidden),nrow = size.hidden)*0.01
b.o = matrix(rnorm(n.uniq), nrow = 1)*0.01
return(list(W.h = W.h, W.x= W.x, b.h = b.h, W.o = W.o, b.o = b.o))
}
affine.forwd <- function(x, W, b){
return(x%*%W + matrix(1, nrow = nrow(x), ncol = 1)%*%b)
}
affine.bckwd <- function(x, W, b, dout){
dx = dout%*%t(W)
dW = t(x)%*%dout
db = colSums(dout)
return(list(dx = dx, dW = dW, db = db))
}
softmax.forwd <- function(x, target){
max.x = apply(x,1,max)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
y = exp(x)/rowSums(exp(x))
delta = 1e-7;
R = nrow(as.matrix(y))
return(-sum(target*log(y + delta))/R)
}
softmax.pred <- function(x, target){
max.x = apply(x,1,max)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
y = exp(x)/rowSums(exp(x))
return(y)
}
softmax.bckwd <- function(x, target, dout = 1){
max.x = apply(x, 1, max)
R = nrow(x)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
y = exp(x)/rowSums(exp(x))
return((y-target)/R)
}
RNN.forward <- function(h.prev, x, network){
b.size = nrow(x)
h = h.prev%*%network$W.h + x%*%network$W.x
hb = h+matrix(1,nrow=b.size,ncol=1)%*%network$b.h
h.next = tanh(hb)
return(h.next = h.next)
}
RNN.backward <- function(dh.next, network, x, h.next, h.prev){
dt = dh.next * (1- h.next^2)
db = colSums(dt)
dW.h = t(h.prev)%*%dt
dh.prev = dt%*%t(network$W.h)
dW.x = t(x)%*%dt
dx = dt%*%t(network$W.x)
return(list(db = db, dW.h = dW.h, dh.prev = dh.prev, dW.x = dW.x, dx=dx))
}
txt = "You say goodbye and I say hello. you say goodbay and I say hello"
txt2corpus <- function(txt){
txt = tolower(txt)
txt = gsub('[.]', ' . sos',txt)
words = unlist(strsplit(c('sos',txt), " "))
uniq.words = unique(words)
n.uniq = length(uniq.words)
n.words = length(words)
corpus = rep(0,n.words)
corpus = match(words,uniq.words)
return(corpus)
}
corp2contxt1SRNN = function(corpus){
len.corp = length(corpus)
# creating target matrix
idxT = cbind(1:(len.corp-1), corpus[2:len.corp])
targ1S = matrix(0,nrow=len.corp-1,ncol=length(unique(corpus)))
targ1S[idxT]=1
# creating context matrices
idxC = cbind(1:(len.corp-1),corpus[1:(len.corp-1)])
contxt = matrix(0,nrow=len.corp-1,ncol=length(unique(corpus)))
contxt[idxC]=1
return(list(y=targ1S,x=contxt))
}
corp = txt2corpus(txt)
dat = corp2contxt1SRNN(corp)
size.hidden = 7
network <- init.RNN(8,size.hidden)
n.rep = 100000;lambda = 0.01;batch.size = 3; time = 3;
h.prev =array(0, c(batch.size, size.hidden, time))
h.next = array(0, c(batch.size, size.hidden, (time+1)))
loss = rep(0,n.rep)
for (i.rep in 1:n.rep){
for (i.t in 1:time){
idx = seq(i.t, corp.len, time)
h.next[, , i.t] = RNN.forward(h.prev[, , i.t], dat$x[idx,], network)
if (i.t < time){
h.prev[, , (i.t+1)] = h.next[, , i.t]
}
}
dWHs = matrix(0,nrow=nrow(network$W.h),ncol=ncol(network$W.h))
dWXs = matrix(0,nrow=nrow(network$W.x),ncol=ncol(network$W.x))
dBHs = matrix(0,nrow=nrow(network$b.h),ncol=ncol(network$b.h))
dWOs = matrix(0,nrow=nrow(network$W.o),ncol=ncol(network$W.o))
dBOs = matrix(0,nrow=nrow(network$b.o),ncol=ncol(network$b.o))
d.prev = matrix(0,nrow=batch.size,ncol=size.hidden)
L = 0
for (i.t in time:1){
idx = idx = seq(i.t, corp.len, time)
O = affine.forwd(h.next[,,i.t], network$W.o, network$b.o)
L = L + softmax.forwd(O, dat$y[idx,])
ds = softmax.bckwd(O, dat$y[idx,], 1)
dW.o = affine.bckwd(h.next[,,i.t], network$W.o, network$b.o, ds)
dWOs = dWOs + dW.o$dW
dBOs = dBOs + dW.o$db
RNN.d = RNN.backward(dW.o$dx+d.prev, network, dat$x[idx,],h.next[,,(i.t+1)],h.prev[,,i.t])
dWHs = dWHs + RNN.d$dW.h
dWXs = dWXs + RNN.d$dW.x
dBHs = dBHs + RNN.d$db
d.prev = RNN.d$dh.prev
}
loss[i.rep] = L
network$W.o = network$W.o - lambda*dWOs
network$b.o = network$b.o - lambda*dBOs
network$W.h = network$W.h - lambda*dWHs
network$W.x = network$W.x - lambda*dWXs
network$b.h = network$b.h - lambda*dBHs
}
plot(loss,type='l')
par(mfrow=c(9,1))
for (i.t in 1:time){
idx = idx = seq(i.t, corp.len, time)
O = affine.forwd(h.next[,,i.t], network$W.o, network$b.o)
print(softmax.pred(O, dat$y[idx,]))
for (i in 1:3){
barplot(softmax.pred(O, dat$y[idx,])[i,])
}
}