N = 10 M = 10000 means = rep(0, M) for (i_rep in 1:M){ dat <- runif(N) means[i_rep] <- mean(dat) } hist(means, xlab = "Estmatedmeans", probability = T, breaks = 30, xlim = c(0,1)) x.temp = seq(0, 1, length.out = 1000) dens <- dnorm(x.temp, mean = 0.5, sd = (1/sqrt(12*N))) lines(x.temp, dens, col = "red", lwd = 3) legend("topright","theoretical desiity",lwd =3, col = "red") X = 10 Y = 1 sumXY = X + Y summation <- function(X,Y){ sumXY = X + Y return(sumXY) } summation(X=1, Y=10) summation(X=5, Y=2) CLT_example <- function(N, M){ means = rep(0, M) for (i_rep in 1:M){ dat <- runif(N) means[i_rep] <- mean(dat) } hist(means, xlab = "Estmated means", probability = T, breaks = 30, xlim =c(0,1)) x.temp = seq(0, 1, length.out = 1000) dens <- dnorm(x.temp, mean = 0.5, sd = (1/sqrt(12*N))) lines(x.temp, dens, col = "red", lwd = 3) legend("topright","theoretical desiity",lwd =3, col = "red") } x0 = 1e5 y0 = 10 z0 = 0 dt = 0.01 T = 10000 alpha = 1e-5 beta = 0.1 x = y = z = rep(0,T) x[1] = x0 y[1] = y0 z[1] = z0 for(t in 1:(T-1)){ x[t+1] = x[t] - (alpha*x[t]*y[t])*dt y[t+1] = y[t] + (alpha*x[t]*y[t]-beta*y[t])*dt z[t+1] = z[t] + (beta*y[t])*dt } plot(x=1:T, x, type = "l", col = 2, lwd = 3, ylim = c(0,x0), xlab = "Time", ylab = "Number of people") lines(x=1:T, y, col = 3, lwd = 3) lines(x=1:T, z, col = 4, lwd = 3) legend("right", c("not infected", "infected","no longer infected"), col=2:4,lwd=3)
Author Archives: matsukat
2020 基礎実習 R programming1
# creating example vectors students = paste("s", 1:20, sep = "") suite = rep(c("s","h","c","d"),13) ns = sort(rep(1:13,4)) cards = paste(suite, ns, sep="") # samples rand_select = sample(1:10, 2) rand_perm = sample(1:10) with_replacemnt = sample(0:1, 10, replace = T) temp = sample(1:5, 5, replace = T) # concrete example # random selection pointed <- sample(students,2) # random permutation randID= sample(1:20) h1 = students[randID[1:10]] h2 = students[randID[11:20]] h1order = sample(h1) h2order = sample(h2) shuffled = sample(cards) cardPlay = data.frame(p1 = shuffled[1:5], p2 = shuffled[6:10], p3 = shuffled[11:15]) # with replacement # for loop num = 1:5 chr = c("a","b","c","d","e") for (i in num){ print(i) } for (i in chr){ print(i) } for (i in num){ print(chr[i]) } p1 = p2 = p3 = rep("joker",5) Ncard = 5 Nplayer = 3 cardSeq = seq(1, Ncard*Nplayer, Nplayer) cardN = 0 for (i_card in cardSeq){ cardN = cardN + 1 p1[cardN] = shuffled[i_card] p2[cardN] = shuffled[i_card+1] p3[cardN] = shuffled[i_card+2] } p1 = shuffled[seq(1,15,3)] p2 = shuffled[seq(2,15,3)] p3 = shuffled[seq(3,15,3)] players = matrix("joker",nrow = Ncard, ncol = Nplayer) colnames(players) <- c("p1","p2","p3") cardN = 0 for (i_card in 1:Ncard){ for (i_player in 1:Nplayer){ cardN = cardN + 1 players[i_card, i_player] = shuffled[cardN] } } players$p1 = shuffled[seq(1,15,3)] players$p2 = shuffled[seq(2,15,3)] players$p3 = shuffled[seq(3,15,3)] p1WinC = p2WinC = tie = 0 Nplay = 10 for (i_play in 1:Nplay){ p1 = sample(1:6,1) p2 = sample(1:6,1) if (p1 > p2){ p1WinC = p1WinC + 1 } else { if (p2 > p1){ p2WinC = p2WinC + 1 } else { tie = tie + 1 } } } result = sample(c(0,1,2),10, replace=T, prob = c(2/12,5/12,5/12)) win_thres = 5 p1WinC = p2WinC = tie = 0 while(max(c(p1WinC, p2WinC)) < win_thres){ p1 = sample(1:6,1) p2 = sample(1:6,1) if (p1 > p2){ p1WinC = p1WinC + 1 } else { if (p2 > p1){ p2WinC = p2WinC + 1 } } } if (p1WinC>p2WinC){ print("player 1 won") } else { print("player 2 won") } win_thres = 5 p1WinC = p2WinC = tie = 0 repeat{ p1 = sample(1:6,1) p2 = sample(1:6,1) if (p1 > p2){ p1WinC = p1WinC + 1 } else { if (p2 > p1){ p2WinC = p2WinC + 1 } } if(max(c(p1WinC, p2WinC)) >= win_thres){ if (p1WinC>p2WinC){ print("player 1 won") } else { print("player 2 won") } break } } vec = sample(1:15) len_vec = length(vec) #vec = 1:15 for (loop1 in 1:(len_vec-1)){ for (loop2 in 2:(len_vec - loop1 + 1)){ if (vec[loop2] < vec[(loop2 - 1)]){ temp_num = vec[loop2] vec[loop2] = vec[(loop2-1)] vec[(loop2-1)] = temp_num } } print(paste("result after loop1 = ", loop1)) print(vec) } vec = sample(1:15) len_vec = length(vec) #vec = 1:15 for (loop1 in 1:(len_vec-1)){ if (all(1:15 == vec)) { print("sorted") print(vec) break } for (loop2 in 2:(len_vec - loop1 + 1)){ if (vec[loop2] < vec[(loop2 - 1)]){ temp_num = vec[loop2] vec[loop2] = vec[(loop2-1)] vec[(loop2-1)] = temp_num } } print(paste("result after loop1 = ", loop1)) print(vec) }
認知情報解析学演習b
library(keras) library(tensorflow) tf$compat$v1$disable_eager_execution() deprocess_image <- function(x) { dms <- dim(x) x <- x - mean(x) x <- x / (sd(x) + 1e-5) x <- x * 0.1 x <- x + 0.5 x <- pmax(0, pmin(x, 1)) array(x, dim = dms) } generate_pattern <- function(layer_name, filter_index, size = 150) { layer_output <- model$get_layer(layer_name)$output loss <- k_mean(layer_output[,,,filter_index]) grads <- k_gradients(loss, model$input)[[1]] grads <- grads / (k_sqrt(k_mean(k_square(grads))) + 1e-5) iterate <- k_function(list(model$input), list(loss, grads)) input_img_data <- array(runif(size * size * 3), dim = c(1, size, size, 3)) * 20 + 128 step <- 1 for (i in 1:40) { c(loss_value, grads_value) %<-% iterate(list(input_img_data)) input_img_data <- input_img_data + (grads_value * step) } img <- input_img_data[1,,,] deprocess_image(img) } library(grid) library(keras) model <- application_vgg16( weights = "imagenet", include_top = FALSE ) layer_name <- "block3_conv1" filter_index <- 1 grid.raster(generate_pattern("block3_conv1", 1))
認知情報解析演習B
input_chiba <- layer_input(shape = c(28,28,1)) brach_a = input_chiba %>% layer_conv_2d(filter = 32, kernel_size = 1, activation = "relu", strides = 2) brach_b = input_chiba %>% layer_conv_2d(filter = 32, kernel_size = 1, activation = "relu") %>% layer_conv_2d(filter = 32, kernel_size = 2, activation = "relu", stride = 2) brach_c = input_chiba %>% layer_average_pooling_2d(pool_size = 2, stride = 2) %>% layer_conv_2d(filter = 32, kernel_size = 1, activation = "relu") brach_d = input_chiba %>% layer_conv_2d(filter = 32, kernel_size = 1, activation = "relu") %>% layer_conv_2d(filter = 32, kernel_size = 1, activation = "relu") %>% layer_conv_2d(filter = 32, kernel_size = 2, activation = "relu", stride = 2) concat = layer_concatenate(list(brach_a, brach_b, brach_c, brach_d)) output_chiba = concat %>% layer_flatten() %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 10, activation = "softmax") chiba_model <- keras_model(input_chiba, output_chiba) mnist <- dataset_mnist() c(c(train_images, train_labels),c(test_images,test_labels)) %<-% mnist train_images <- array_reshape(train_images,c(60000,28,28,1)) test_images <- array_reshape(test_images,c(10000,28,28,1)) train_images = train_images/255 test_images = test_images/255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) chiba_model %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) history <- chiba_model %>% fit( train_images, train_labels, epochs = 15, batch_size =64, validation_data = list(test_images,test_labels) ) plot(history)
広域システム特別講義II 認知・社会モデル
# cognitive modeling ALC.init<-function(size) { # size[1] = input dimension # size[2] = number of exemplars # size[3] = number of categories alpha=matrix(1,nrow=1,ncol=size[1])/size[1] w=matrix(rnorm(size[3]*size[2])*0.1,ncol=size[2]) c=2 # gain phi=3 # decision strength lrA=0.2 # learning rate for attentions lrW=0.1 # learning rate for associations return(list(alpha = alpha, w = w, lrA = lrA, lrW = lrW, c = c, phi = phi)) } # alcove forward process alcove.forward <- function(parmSet, inp, exemplar){ diff= matrix(abs(matrix(1,n.exemp,1)%*%inp-exemplar),nrow=nrow(exemplar)) exemp=exp(-parmSet$c*(diff%*%t(parmSet$alpha))) out=parmSet$w%*%exemp return(list(diff = diff, exemp = exemp, out = out)) } # alcove backward process alcove.backward <- function(res.forward,parmSet, target){ err=target-res.forward$out dW=parmSet$lrW*res.forward$exemp%*%t(err) dA=-parmSet$lrA*(t(err)%*%parmSet$w*t(res.forward$exemp))%*%res.forward$diff*parmSet$c return(list(dW = dW, dA = dA)) } ### ALCOVE full implementation ALC.init<-function(size) { # size[1] = input dimension # size[2] = number of exemplars # size[3] = number of categories alpha=matrix(1,nrow=1,ncol=size[1])/size[1] w=matrix(rnorm(size[3]*size[2])*0.1,ncol=size[2]) c=2 # gain phi=3 # decision strength lrA=0.2 # learning rate for attentions lrW=0.1 # learning rate for associations return(list(alpha = alpha, w = w, lrA = lrA, lrW = lrW, c = c, phi = phi)) } # alcove forward process alcove.forward <- function(parmSet, inp, exemplar){ diff= matrix(abs(matrix(1,n.exemp,1)%*%inp-exemplar),nrow=nrow(exemplar)) exemp=exp(-parmSet$c*(diff%*%t(parmSet$alpha))) out=parmSet$w%*%exemp return(list(diff = diff, exemp = exemp, out = out)) } # alcove backward process alcove.backward <- function(res.forward,parmSet, target){ err=target-res.forward$out dW=parmSet$lrW*res.forward$exemp%*%t(err) dA=-parmSet$lrA*(t(err)%*%parmSet$w*t(res.forward$exemp))%*%res.forward$diff*parmSet$c return(list(dW = dW, dA = dA)) } # main function alcove<-function(parmSet, inp, exemplar, targ,iter) { # ----ALCOVE for R --- # input arguments # parmSet - parameter set # inp - input matrix (n_sample x n_dimension) # exemplar - exemplar matrix (n_sample x n_dimension) # targ - target matrix (n_sample x n_category) # iter - # of training epochs # ----ALCOVE for R --- # initialization inpDim = ncol(inp) n.inp = nrow(inp) n.exemp = nrow(exemplar) n.cat = ncol(targ) accu=rep(0,nrow=iter+1) attn=matrix(0,nrow=iter+1,ncol=inpDim) attn[1,]=alpha # end initialization # main loop for (i_iter in 1:iter) { ro=sample(1:n.inp, n.inp) prob_temp=0; for (i_tr in 1:n.inp) { res.forward <- alcove.forward(parmSet, inp[ro[i_tr],], exemplar) res.backward <- alcove.backward(res.forward, parmSet, targ[ro[i_tr],]) parmSet$w = parmSet$w+t(res.backward$dW) parmSet$alpha = parmSet$alpha+res.backward$dA parmSet$alpha[which(parmSet$alpha<0)]=0 pT=(exp(parmSet$phi*res.forward$out)/sum(exp(parmSet$phi*res.forward$out)))*targ[ro[i_tr],] prob_temp=prob_temp+pT[which(!pT==0)] } accu[i_iter+1]=prob_temp/n.inp attn[i_iter+1,]=alpha } attnN=attn/apply(attn,1, sum) out=matrix(0,nrow=n.cat,ncol=n.inp) for (i_tr in 1:n.inp) { res.forward<-alcove.forward(parmSet, inp[i_tr,], exemplar) out[,i_tr]=res.forward$out } return(list(attn=attn,attnN=attnN,accu=accu,out=out,ps=parmSet)) } exemplar = matrix(c(0,0,0, 0,0,1, 0,1,0, 0,1,1, 1,0,0, 1,0,1, 1,1,0, 1,1,1),byrow=T,nrow=8) inp = exemplar target1 = matrix(c(0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0),nrow=8) target2 = matrix(c(1,1,0,0,0,0,1,1, 0,0,1,1,1,1,0,0),nrow=8) target3 = matrix(c(1,1,1,0,0,1,0,0, 0,0,0,1,1,0,1,1),nrow=8) target4 = matrix(c(1,1,1,0,1,0,0,0, 0,0,0,1,0,1,1,1),nrow=8) target5 = matrix(c(1,1,1,0,0,0,0,1, 0,0,0,1,1,1,1,0),nrow=8) target6 = matrix(c(1,0,0,1,0,1,1,0, 0,1,1,0,1,0,0,1),nrow=8) seed.num = 1;n.train = 50 set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result1<-alcove(parmSet,inp,exemplar,target1,n.train) plot(result1$accu,type='o',lwd=2,pch=20,col=1) set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result2<-alcove(parmSet,inp,exemplar,target2,n.train) lines(result2$accu,type='o',lwd=2,pch=20,col=2) set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result3<-alcove(parmSet,inp,exemplar,target3,n.train) lines(result3$accu,type='o',lwd=2,pch=20,col=3) set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result4<-alcove(parmSet,inp,exemplar,target4,n.train) lines(result4$accu,type='o',lwd=2,pch=20,col=4) set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result5<-alcove(parmSet,inp,exemplar,target5,n.train) lines(result5$accu,type='o',lwd=2,pch=20,col=5) set.seed(seed.num) parmSet<-ALC.init(c(3,8,2)) result6<-alcove(parmSet,inp,exemplar,target6,n.train) lines(result6$accu,type='o',lwd=2,pch=20,col=6) legend("bottomright",paste("type",1:6,sep=''),col=1:6,lwd=2,pch=20) ### end ALCOVE # evo. game food = 6; cost = 10 A = 0.5*(food-cost); B = food C = 0; D = food/2 pay.mat = matrix(c(A,B,C,D),nrow=2,byrow=TRUE) dt = 0.01;max_time=1000 p = rep(0,max_time) q = rep(0,max_time) p[1] = 0.2 q[1] = 1 - p[1] for (t in 1:max_time){ prob.mat = outer(c(p[t],q[t]),c(p[t],q[t])) W.ave = sum(prob.mat*pay.mat) W.h = sum(c(p[t],q[t])*pay.mat[1,]) W.d = sum(c(p[t],q[t])*pay.mat[2,]) p[(t+1)] = p[t]+(p[t]*(W.h-W.ave)/W.ave)*dt q[(t+1)] = q[t]+(q[t]*(W.d-W.ave)/W.ave)*dt } plot(p,type='l',lwd=2,col='red',ylim=c(0,1)) lines(q,type='l',lwd=2,col='blue') # cake game n.cake = 10 pay.mat = matrix(0,n.cake+1,n.cake+1) for (i.cake in 1:n.cake){ pay.mat[(i.cake+1),1:(n.cake-i.cake+1)] =i.cake } p.cake = runif(n.cake+1) p.cake = p.cake/sum(p.cake) max.time = 50 dt = 0.01 t = seq(0,max.time,dt) n.iter = length(t) p.hist = matrix(0,nrow = n.iter, ncol = (n.cake+1)) p.hist[1,] = p.cake for (i.time in 2:n.iter){ W = colSums(p.cake*t(pay.mat)) W.ave = sum(outer(p.cake,p.cake)*pay.mat) p.cake = p.cake + p.cake*(W - W.ave)/W.ave * dt p.hist[i.time,] = p.cake } plot(p.hist[,1],ylim=c(0,1),type='l',lwd=2,ylab = 'Proportion',xlab="time") for (i.strat in 2:(n.cake+1)){ lines(p.hist[,i.strat],col=i.strat,lwd=2) } legend("topleft",paste("request = ",0:10),col=1:(n.cake+1),lwd =2,cex=0.75) ### fighting couple fighting_couple<-function(a,b,c,d) { timeSep=0.05;ts=seq(1,50,timeSep);n_ts=length(ts) x=matrix(0,nrow=n_ts,ncol=1) y=matrix(0,nrow=n_ts,,ncol=1) initX=c(rep(-40,5),rep(-20,5),rep(0,5),rep(20,5),rep(40,5)) initY=c(rep(c(-40,-20,0,20,40),5)) initX=initX[-13] initY=initY[-13] lengthINI=length(initX) for (i_ini in 1:lengthINI) { x[1]=initX[i_ini];y[1]=initY[i_ini]; for (i_gen in 2:n_ts) { x[i_gen]=x[i_gen-1]+(a*x[i_gen-1]+b*y[i_gen-1])*timeSep y[i_gen]=y[i_gen-1]+(c*x[i_gen-1]+d*y[i_gen-1])*timeSep } if (i_ini==1) { plot(x,y,xlim=c(-50,50),ylim=c(-50,50),col=4,type='l',lwd=2, xlab="X's Action",ylab="Y's Action") arrows(x[2],y[2],x[3],y[3],col=4,lwd=2,length=0.15)} else { lines(x, y, col=4, lwd=2) arrows(x[2], y[2], x[3], y[3], col=4,lwd=2, length=0.15) } } } par(mfrow=c(2,3)) fighting_couple(-1,0.0,0.5,-1) fighting_couple(-1,2,-1,-1) fighting_couple(0,-1,1,0) fighting_couple(1,-2,2,0) fighting_couple(1,0,0.5,1) fighting_couple(1,-4,-4,0)
広域システム特別講義II 確率的最適化法
naive.stochOptim <- function(obj.func, x, n.iter, width){ opt.value <- do.call(obj.func, list(x)) opt.hist = matrix(0, nrow = n.iter, ncol = 5) opt.hist[1,] = c(x, x, opt.value, opt.value, 1) for (i.iter in 2:n.iter){ accpet = 0 temp.x <- x + rnorm(1, mean = 0, sd = width) temp.value <- do.call(obj.func, list(temp.x)) if (temp.value < opt.value){ x = temp.x opt.value = temp.value accept = 1 } opt.hist[i.iter, ] = c(x, temp.x, opt.value, temp.value, 1) } return(data.frame(opt.hist)) } set.seed(50) n.iter =500 fun01<-function(x){x^2+2*x} res <- naive.stochOptim(fun01,3,n.iter,1) # vizualizing results par(mfrow=c(2,1)) # upper panel plot(res$X2,res$X4,col='red',pch=20,cex=2,xlab = "x", ylab='f(x)') legend("topleft",c("accepted","tested"),pch=c(20,20),col=c("black","red")) x.seq = seq(min(res$X2),max(res$X2),length.out = n.iter) lines(x.seq,fun01(x.seq)) points(res$X1,res$X3,col='black',pch=20) # lower panel plot(res$X3,1:n.iter,type='n',pch=20,xlim=c(min(res$X2),max(res$X2)),xlab='x',ylab="Trial") for (i.iter in 2:n.iter){ lines(c(res$X1[(i.iter-1)],res$X2[i.iter]),c((i.iter-1),i.iter),type='o',pch=20,col='red',cex=1.5) } points(res$X1,1:n.iter,type='o',pch=20) legend("topright",c("accepted","tested"),pch=c(20,20),col=c("black","red")) SimAneal01<-function(func, initXY, maxItr=1000, C=1, eta=0.99, width=10) { x=initXY opt.value = do.call(func,list(x)) n.var = length(x) opt.hist=matrix(0, nrow=maxItr, ncol=5) opt.hist[1,]=c(x,x,opt.value,opt.value,0) for (i_loop in 2:maxItr) { accept = 0 temp.x = x + rnorm(n.var, mean = 0, sd=width) temp.value= do.call(func,list(temp.x)) delta=temp.value-opt.value; prob=1/(1+exp(delta/(C*width))) if (runif(1) < prob) { x = temp.x; opt.value = temp.value; accept = 1 } opt.hist[i_loop,]=c(x, temp.x, opt.value, temp.value, accept); width=width*eta } return(data.frame(opt.hist)) } set.seed(48) n.iter = 500 res <- SimAneal01(fun01, 3, n.iter, 1, 0.985, 1) #vizualizing results par(mfrow=c(2,1)) # upper panel plot(res$X2,res$X4,col='red',pch=20,cex=2,xlab = "x", ylab='f(x)') legend("topleft",c("accepted","tested"),pch=c(20,20),col=c("black","red")) x.seq = seq(min(res$X2),max(res$X2),length.out = n.iter) lines(x.seq,fun01(x.seq)) points(res$X1,res$X3,col='black',pch=20) # lower panel plot(res$X3,1:n.iter,type='n',pch=20,xlim=c(min(res$X2),max(res$X2)),xlab='x',ylab="Trial") for (i.iter in 2:n.iter){ lines(c(res$X1[(i.iter-1)],res$X2[i.iter]),c((i.iter-1),i.iter),type='o',pch=20,col='red',cex=1.5) } points(res$X1,1:n.iter,type='o',pch=20) legend("topright",c("accepted","tested"),pch=c(20,20),col=c("black","red")) ### TSP TSP_inv<-function(route,len) { len_route=length(route) invP=sample(1:len_route,1) route[invP:min(len_route,(invP+len-1))]=rev(route[invP:min(len_route,(invP+len-1))]) return(route) } TSP_switch<-function(route){ len_route=length(route) switchP=sample(1:len_route,2) route[switchP]=route[rev(switchP)] return(route) } TSP_trans<-function(route){ len_route=length(route) transP=sample(1:len_route,2); tempR=route[-transP[1]] if (transP[2]==1){ tempR=c(route[transP[1]],tempR) } else if (transP[2]==len_route) { tempR=c(tempR,route[transP[1]]) } else { tempR=c(tempR[1:(transP[2]-1)],route[transP[1]],tempR[(transP[2]): (len_route-1)]) } return(tempR) } FUN_initTSP<-function(n_city=10) { return(matrix(runif(n_city*2,1,100),nrow=n_city,ncol=2)) } FUN_costTSP<-function(route,cities) { route=c(route,route[1]);n_cities=nrow(cities);totDist=0; for (i_cities in 1:n_cities) { totDist=totDist+dist(cities[route[i_cities:(i_cities+1)],]) } return(totDist) } TSP_demo<-function(n_city=20, maxItr=1000 , C = 1, eta = 0.99, TEMP = 50) { loc=FUN_initTSP(n_city);route=1:n_city optDist=FUN_costTSP(route,loc) optHist=matrix(0,nrow=maxItr,ncol=(length(route)+1)) optHist[1,]=c(route,optDist) for (i_loop in 2:maxItr) { rand.op=sample(c('inv','sw','trans'),1,prob=c(0.75,0.125,0.125)) if (rand.op=='inv') { new.route=TSP_inv(route,sample(2:n_city,1)) } else if (rand.op=='sw') { new.route=TSP_switch(route) } else { new.route=TSP_trans(route)} new.dist=FUN_costTSP(new.route,loc) delta=new.dist-optDist prob=1/(1+exp(delta/(C*TEMP))) if (runif(1) < prob) { route=new.route;optDist=new.dist; } optHist[i_loop,]=c(route,optDist); TEMP=TEMP*eta } par(mfrow=c(1,2)) plot(rbind(loc,loc[1,]),type='o',pch=20,cex=2.5, col='red', xlab='location @X',ylab='location @Y',main='Initial route') plot(loc[optHist[1000,c(1:n_city,1)],],type='o',pch=20, col='magenta', cex=2.5,xlab='location @X',ylab='location @Y',main='Optimized route') return(optHist) } TSP_demo() ### GA / ES # genetic algorithm - identify the best linear model GA_recomb<-function(G) { nPop=nrow(G); nVar=ncol(G); child = G; G.permuted = G[sample(1:nPop),] recomb.idx=which(matrix(sample(0:1,nPop*nVar,replace=TRUE),nrow=nPop)==1) child[recomb.idx] = G.permuted[recomb.idx] return(child) } GA_mutate = function(child, p){ n.pop = nrow(child) n.var = ncol(child) mut.mat= matrix((runif(n.pop*n.var) < p), nrow = n.pop) child = abs(child-mut.mat) return(child) } GA_survive<-function(G, child, fitG, fitC){ nPop=nrow(G); fitT=c(fitG,fitC); fitMax=sort(fitT,index.return=T,decreasing = T) tempX=rbind(G,child); G=tempX[fitMax$ix[1:nPop],] return(G) } GA<-function(G, nGen,p,X,Y){ optHist=matrix(0,nrow=nGen,ncol=1) G.hist = matrix(0,nrow=nGen,ncol = ncol(G)) nPop = nrow(G) nVar = ncol(G) fitG = rep(0,nPop) fitC = fitG for (i.pop in 1:nPop){ dat.temp = X[,which(G[i.pop,]==1)] fitG[i.pop] = summary(lm(Y~dat.temp))$adj.r.squared } optHist[1]=max(c(fitG)) G.hist[1,] = G[which.max(fitG),] for (i_gen in 2:nGen) { child<-GA_recomb(G) child<-GA_mutate(child,p) # assuming same numbers of set of genes for (i.pop in 1:nPop){ dat.temp = X[,which(G[i.pop,]==1)] fitG[i.pop] = summary(lm(Y~dat.temp))$adj.r.squared if (sum(child[i.pop,])==0){ child[i.pop,sample(1:ncol(child.all),sample(1:nVar,1))]=1 } dat.temp = X[,which(child[i.pop,]==1)] fitC[i.pop] = summary(lm(Y~dat.temp))$adj.r.squared } G<-GA_survive(G, child, fitG, fitC) optHist[i_gen]=max(c(fitG,fitC)) G.hist[i_gen, ] = G[1,] } return(list(G = G, optHist = optHist, G.hist = G.hist)) } set.seed(19) nVar = 10 nData = 50 X=matrix(rnorm(nVar*nData,mean=10,sd=5),ncol=nVar); y=X%*%c(-2,0,2,0,2,0,-3,0,-2,0)+rnorm(nData,mean=0,sd=8); summary(lm(y~X[,seq(1,9,2)])) summary(lm(y~X)) G = matrix(sample(0:1,300,replace = T),nrow=30) res<-GA(G,100,0.1,X,y) head(res$G) # GA - challenging task C = combn(3,2) temp.lab =toString(paste("X",C[ , i.comb], sep = "")) gsub(",", "*", temp.lab) n.comb = ncol(C) for (i.comb in 1: n.comb){ temp.label = toString(paste("X",C[ , i.comb], sep = "")) var.labels = c(var.labels, gsub(",", "*", temp.label) ) } mk.labels <- function(C){ var.labels = c() n.comb = ncol(C) for (i.comb in 1: n.comb){ temp.label = toString(paste("X",C[ , i.comb], sep = "")) var.labels = c(var.labels, gsub(",", "*", temp.label) ) } return(var.labels) } var.labels = paste("X", 1:n.var, sep = "") # interaction terms for (i.interaction in 2:max.interaction ){ combination = combn(n.var, i.interaction) var.labels = c(var.labels, mk.labels(combination)) } model.def = paste("Y ~", gsub(",", "+", toString(var.labels[c(1,1,1,1,1,0,0) == 1]))) X=matrix(rnorm(nVar*nData,mean=10,sd=5),ncol=nVar); y=X%*%c(1,1,-2)+rnorm(nData,mean=0,sd=3); dat = data.frame(y=y,X1=X[,1],X2=X[,2],X3=X[,3]) model.lm = lm(model.def, dat) ## full implementation # function to make model labels for paritcular set of combn mk.labels <- function(C){ var.labels = c() n.comb = ncol(C) for (i.comb in 1: n.comb){ temp.label = toString(paste("X",C[ , i.comb], sep = "")) # options for model specification # Opt 1: models that include all lower-degree interaction term # Opt 2: models that do NOT include any lower-degree interaction term # # Opt1 #var.labels = c(var.labels, gsub(",", ":", temp.label) ) # # Opt2 var.labels = c(var.labels, gsub(",", ":", temp.label) ) } return(var.labels) } # function to make all model labels given number of variable # and maximum degrees of interactions mk.labels.all <- function(n.var, max.interaction){ var.labels = paste("X", 1:n.var, sep = "") for (i.interaction in 2:max.interaction ){ combination = combn(n.var, i.interaction) var.labels = c(var.labels, mk.labels(combination)) } return(var.labels) } # crearting model label # assuming 10 variables & 5-degree interaction terms var.labels<-mk.labels.all(5,5) # generating data set set.seed(30) nData = 1000; n.var = 5 X=matrix(rnorm(n.var*nData,mean=10,sd=5),ncol=n.var); Y=X[,seq(1,5)]%*%c(1,1,-2,-1,1) + apply(X[,c(1,3)],1,prod)*0.1 + apply(X[,c(2,4)],1,prod)*-0.1 + apply(X[,c(1,3,5)],1,prod)*0.01 + apply(X[,c(2,4,5)],1,prod)*0.01+ rnorm(nData,mean=0,sd=10); dat = data.frame(Y,X) colnames(dat) <- c('Y', paste("X",1:n.var,sep="")) # checking fit of the "TRUE" model summary(lm(Y~X1*X3+X2*X4+X1:X3:X5++X2:X4:X5+X5, dat)) AIC(lm(Y~X1*X3+X2*X4+X1:X3:X5++X2:X4:X5+X5, dat)) # initializing parent population nPop = 50 G = matrix(sample(0:1,nPop*length(var.labels),replace=TRUE,prob = c(0.8, 0.2)),nrow=nPop) # recombination GA_recomb<-function(G) { nPop=nrow(G); nVar=ncol(G); child = G; G.permuted = G[sample(1:nPop),] recomb.idx=which(matrix(sample(0:1,nPop*nVar,replace=T),nrow=nPop)==1) child[recomb.idx] = G.permuted[recomb.idx] return(child) } # mutation GA_mutate = function(child, p){ n.pop = nrow(child) n.var = ncol(child) mut.mat= matrix((runif(n.pop*n.var) < p), nrow = n.pop) child = abs(child-mut.mat) return(child) } # surviver selection - works with either min or max prob. GA_survive<-function(G, child, fitG, fitC, mnmx = "min"){ nPop=nrow(G); fitT=c(fitG,fitC); if (mnmx == "max"){ fitMax=sort(fitT,index.return=TRUE,decreasing = TRUE) } else { fitMax=sort(fitT,index.return=TRUE) } tempX=rbind(G,child); G=tempX[fitMax$ix[1:nPop],] return(G) } # main function GA<-function(G, nGen,p,dat){ optHist=matrix(0,nrow=nGen,ncol=1) G.hist = matrix(0,nrow=nGen,ncol = ncol(G)) nPop = nrow(G) nVar = ncol(G) fitG = rep(0,nPop) fitC = fitG for (i.pop in 1:nPop){ model.def = paste("Y ~", gsub(",", "+", toString(var.labels[G[i.pop,] == 1]))) #fitG[i.pop] = summary(lm(model.def,dat))$adj.r.squared fitG[i.pop] = AIC(lm(model.def,dat)) } optHist[1]=max(c(fitG)) G.hist[1,] = G[which.max(fitG),] # to display progress prog.prop = round(seq(0,nGen,length.out=10)) prog.report = paste(seq(0,100,10),"% done\n",sep="") for (i_gen in 2:nGen) { if (any(i_gen == prog.prop)){ cat(prog.report[which(i_gen==prog.prop)]) } child <- GA_recomb(G) child <- GA_mutate(child,p) # assuming same numbers of set of genes for (i.pop in 1:nPop){ model.def = paste("Y ~", gsub(",", "+", toString(var.labels[G[i.pop,] == 1]))) #fitG[i.pop] = summary(lm(model.def,dat))$adj.r.squared fitG[i.pop] = AIC(lm(model.def,dat)) if (sum(child[i.pop,],na.rm=TRUE)==0){ child[i.pop,sample(1:ncol(child.all),sample(1:nVar,1))]=1 } model.def = paste("Y ~", gsub(",", "+", toString(var.labels[child[i.pop,] == 1]))) #fitC[i.pop] = summary(lm(model.def,dat))$adj.r.squared fitC[i.pop] = AIC(lm(model.def,dat)) } G <- GA_survive(G, child, fitG, fitC, "min") optHist[i_gen]=min(c(fitG,fitC)) G.hist[i_gen, ] = G[1,] } return(list(G = G, optHist = optHist, G.hist = G.hist)) } # running simulation res = GA(G,1000,0.15, dat) model.def = paste("Y ~", gsub(",", "+", toString(var.labels[res$G[1,] == 1]))) summary(lm(model.def,dat)) AIC(lm(model.def,dat)) plot(res$optHist,type='l',xlab="generation",ylab="AIC") var.labels[which(res$G[1,]==1)] ### end extensive GA # Evolutionary Strategy - estimating coefficient ES_recomb<-function(G) { nParent=nrow(G$x);nVar=ncol(G$x) child = G; for (i_child in 1:nParent) { parentID=sample(1:nParent,2) coID=sample(c(0,1),nVar,replace=T) child$x[i_child,]=G$x[parentID[1],] child$x[i_child,which(coID==1)]=G$x[parentID[2],which(coID==1)] child$sigma[i_child,]=0.5*(G$sigma[parentID[1],]+G$sigma[parentID[2],]) } return(child) } ES_mutate<-function(child,tau){ nChild=nrow(child$x);nVar=ncol(child$x) child$sigma<-child$sigma*exp(matrix(rnorm(nChild*nVar)*tau,nrow=nChild)) child$x=child$x+child$sigma*matrix(rnorm(nChild*nVar),nrow=nChild,ncol=nVar) return(child) } ES_survive<-function(G, child, fitG, fitC){ nParent=nrow(G$x); fitT=c(fitG,fitC); fitMin=sort(fitT,index.return=T) tempX=rbind(G$x,child$x); tempS=rbind(G$sigma,child$sigma) G$x=tempX[fitMin$ix[1:nParent],] G$sigma=tempS[fitMin$ix[1:nParent],] return(G) } ES<-function(G,func, nGen, tau,X,y){ optHist=matrix(0,nrow=nGen,ncol=1) G.hist = matrix(0,nrow=nGen,ncol = ncol(G$x)) fitG = fitG = apply(G$x,1,func,X,y) optHist[1] = min(fitG) G.hist[1,] = G$x[which.min(fitG),] child = G; for (i_gen in 2:nGen) { child<-ES_recomb(G) child<-ES_mutate(child,tau) fitG = apply(G$x,1,func,X,y) fitC = apply(child$x,1,func,X,y) G<-ES_survive(G, child, fitG, fitC) optHist[i_gen]=min(c(fitG,fitC)) G.hist[i_gen, ] = G$x[1,] } return(list(G = G, optHist = optHist, G.hist = G.hist)) } set.seed(20); nData = 100 X=matrix(rnorm(9*nData,mean=10,sd=2),ncol=9);X=cbind(rep(1,nData),X) y=X%*%c(10,2,5,-3,-5,0,0,0,0,0)+rnorm(nData,mean=0,sd=2); fun04<-function(b,X,y){ yhat<-X%*%b return(sum((y-yhat)^2)) } G = list() G$x = matrix(rnorm(10*30), ncol=10) G$sigma = matrix(runif(10*30,0.5,1.5), ncol=10) res=ES(G, fun04, 1000, 1,X,y) # PSO - optim. 2-variable function PSO<-function(G, wP, wG, func, maxIter){ swarm.hist = array(0, c(nrow(G), ncol(G), maxIter)) swarm.hist[,,1]=G p.b.hist = apply(G,1,func) global.best.v = min(p.b.hist) p.Best = G g.Best = matrix(G[which.min(p.b.hist),],nrow=nrow(G),ncol=ncol(G),byrow=T) v = matrix(0,nrow = nrow(G),ncol = ncol(G)) for (i.iter in 2:maxIter){ v = v + wP*runif(1)*(p.Best - G) + wG*runif(1)*(g.Best - G) G = G + v fitG = apply(G,1,func) if (min(fitG) < global.best.v){ g.Best = matrix(G[which.min(fitG),],nrow=nrow(G),ncol=ncol(G),byrow=T) global.best.v = min(fitG) } idx = which(fitG < p.b.hist) p.Best[idx,] = G[idx,] p.b.hist= fitG swarm.hist[,,i.iter]=G } return(swarm.hist) } # running PSO par(mfrow=c(1,1)) fun03<-function(x) {x[1]^4-16*x[1]^2-5*x[1]+x[2]^4-16*x[2]^2-5*x[2]} x<-seq(-5, 5,length.out=100);y<-x;z<-outer(x,y,funZ) contour(x,y,z,nlevels=30,drawlabel=F) nSwarm = 100; nVar = 2; G=matrix(rnorm(nVar*nSwarm,mean=0,sd=0.1),ncol=nVar) res<-PSO(G,0.1,0.1,fun03,500) lines(res[1,1,],res[1,2,],type='o',col='red')
データ解析基礎論B 人工神経回路
library(nnet) dat<-read.csv("http://www.matsuka.info/data_folder/tdkReg01.csv") set.seed(5) x = dat[,1:3] y = dat[,4] dat.nnet = nnet(x,y, size = 150, linout= TRUE, maxit = 1000) nnet.pred <-predict(dat.nnet,dat) cor(dat.nnet$fitted.values,dat$sales)^2 n.data = nrow(dat); n.sample = n.data*0.6; n.rep = 100 trainNN.cor = rep(0,n.rep); trainLM.cor = rep(0,n.rep) testNN.cor = rep(0,n.rep); testLM.cor = rep(0,n.rep) for (i.rep in 1:n.rep){ randperm = sample(1:n.data) train.idx = randperm[1:n.sample] test.idx = randperm[(n.sample+1):n.data] dat.nnet <- nnet(sales~.,size = c(10), linout=T,decay= 0.01, maxit=1000, data = dat[train.idx,]) dat.lm <-lm(sales~.,data=dat[train.idx, ]) trainNN.cor[i.rep] <- cor(predict(dat.nnet,dat[train.idx, ]), dat[train.idx,]$sales) trainLM.cor[i.rep] <- cor(predict(dat.lm,dat[train.idx, ]), dat[train.idx,]$sales) testNN.cor[i.rep] <- cor(predict(dat.nnet,dat[test.idx, ]), dat[test.idx,]$sales) testLM.cor[i.rep] <- cor(predict(dat.lm,dat[test.idx, ]), dat[test.idx,]$sales) } print(c(mean(trainNN.cor,na.rm=T),mean(testNN.cor,na.rm=T))) print(c(mean(trainLM.cor,na.rm=T),mean(testLM.cor,na.rm=T))) print(c(max(trainNN.cor,na.rm=T),max(testNN.cor,na.rm=T))) print(c(max(trainLM.cor,na.rm=T),max(testLM.cor,na.rm=T))) print(c(min(trainNN.cor,na.rm=T),min(testNN.cor,na.rm=T))) print(c(min(trainLM.cor,na.rm=T),min(testLM.cor,na.rm=T))) dat<-read.csv("http://matsuka.info/data_folder/tdkDA01.csv", header=T) dat.nnet<-nnet(class~.,dat,size=30,maxit=1000,decay=0.05) dat.pred<-predict(dat.nnet,dat,type="class") table(dat.pred,dat$class) dat.glm<-glm(class~., family="binomial",dat) glm.pred<-predict(dat.glm, dat, type="response")>0.5 table(glm.pred,dat$class) dat<-read.csv("http://www.matsuka.info/data_folder/cda7-16.csv") wts = rep(1,nrow(dat)) wts[which(dat$survival=="no")]=45 dat.nnet<-nnet(survival~., weights=wts, dat, size=100, maxit=1000, decay=0.1) dat.pred<-predict(dat.nnet,dat,type="class") table(dat.pred,dat$survival) dat<-read.csv("http://matsuka.info/data_folder/tdkDA02.csv",header=T) class.id<-class.ind(dat$class) x = dat[,1:6] dat.nnet<-nnet(x, class.id, size=30, maxit=1000, decay=0.01, softmax=TRUE) max.id = apply(dat.nnet$fitted.values,1,which.max) table(max.id,dat$class) dat<-read.table("http://www.matsuka.info/data_folder/tdkPCA01.txt") dat.nnet<-nnet(dat,dat,size=2, maxit=1000, decay=0.01, linout=TRUE)
広域システム特別講義II ベイズ統計
library(rjags) source("http://www.matsuka.info/univ/course_folder/HDI_revised.txt") island.hopping2 <- function(n.rep=1e5, init.st=4) { # example from DBDA 2nd Ed. (Kruschke) ch. 07 # intro to MCMC, island hopping # initialization state = 1:7 curr.st = init.st state.counter = rep(0,7) state.counter[curr.st] = 1 state.history=rep(0, n.rep) state.history[1]=curr.st prob.propose = matrix(1/6, nrow=7,ncol=7) diag(prob.propose)<-0 # main loop for (i.rep in 2:n.rep) { destination = sample(state, 1, prob=prob.propose[curr.st,]) prob.move = min(destination/curr.st, 1) if (runif(1) < prob.move) { curr.st = destination } state.history[i.rep] = curr.st state.counter[curr.st] = state.counter[curr.st]+1 } par(mfrow=c(2, 1)) par(mai=c(0, 1, 1, 1)) par(mar=c(4, 3, 1, 3)) barplot(state.counter, xlab="theta", ylab="Frequency") plot(state.history, 1:n.rep, type='o', log='y', xlab="theta", ylab="Time Step (log)", col="orange") } island.hopping2(10000, 4) metropolis.ex01 <- function(n.iter=1e6, theta.init=0.1, sigma=0.2, plot.yn = T){ # example from DBDA 2nd Ed. (Kruschke) ch. 07 # metropolis algo. with 1 parameter # "posterior of theta" function posterior.theta <- function(theta, N, z, a, b) { posterior = theta^z * (1-theta)^(N-z) * theta^(a-1) * (1 - theta)^(b-1) / beta(a,b) } # initialization theta.history = rep(0,nrow = n.iter,ncol = 1) theta.current = theta.init theta.history[1] = theta.current # values given in text mu = 0 N = 20 z = 14 a = 1 b = 1 # main loop for (i_iter in 2:n.iter) { theta.proposed = theta.current + rnorm(1, mean=mu, sd=sigma) if (theta.proposed < 0 | theta.proposed > 1) { p.move = 0 } else { p.current = posterior.theta(theta.current, N, z, a, b) p.proposed = posterior.theta(theta.proposed, N, z, a, b) p.move = min(p.proposed/p.current, 1) } if (runif(1) < p.move) { theta.current = theta.proposed } theta.history[i_iter] = theta.current } # plotting results if (plot.yn == T) { par(mfrow = c(3, 1)) hist(theta.history, nclass = 100, col = "orange", probability = T, xlab = "theta") den=density(theta.history) lines(den) plot(theta.history[(n.iter-100):n.iter], ((n.iter-100):n.iter), type = 'o', xlim = c(0,1), xlab="theta", ylab = "step in chain") plot(theta.history[1:100],1:100, type = 'o', xlim = c(0,1), xlab = "theta", ylab = "step in chain") } return(theta.history) } res = metropolis.ex01(10000, 0.1) # initialization n.iter = 10000; sigma = 0.1; counter = 0 z = c(6, 2); N = c(8, 7) a = c(2, 2); b = c(2, 2); n.par = 2 th.hist = matrix(0, nrow = n.iter*n.par, ncol = n.par) theta = runif(2) # function to calc. prob. move prob.gibbs <- function(theta, proposed, N, z, a, b, idx){ p.th=dbeta(theta[idx], z[idx]+a[idx], N[idx]-z[idx]+b[idx]) p.pro=dbeta(proposed, z[idx]+a[idx], N[idx]-z[idx]+b[idx]) return(p.pro/p.th) } # main loop for (i.iter in 1:n.iter){ for (i.par in 1:n.par){ proposed = theta[i.par] + rnorm(1, mean=0, sd=sigma) if (proposed > 1) {proposed = 1} if (proposed < 0) {proposed = 0} p.move= min(1, prob.gibbs(theta, proposed, N, z, a, b, i.par)) if (runif(1) < p.move){ theta[i.par] = proposed } counter = counter + 1 th.hist[counter, ] = theta } } par(mfrow=c(3,1)) HDI.plot(th.hist[,1]) HDI.plot(th.hist[,2]) plot(th.hist[,1],th.hist[,2], type='o',cex=0.1,xlim = c(0,1),ylim=c(0,1)) par(mfrow=c(1,1)) model.txt = " model { for ( i_data in 1:Ntotal ) { y[ i_data ] ~ dbern( theta ) } theta ~ dbeta( 1, 1 ) }" writeLines(model.txt, "model.txt") dat<-read.csv("http://www.matsuka.info/univ/course_folder/z15N50.csv") y=dat$y Ntotal=length(dat$y) datalist = list(y=y,Ntotal=Ntotal) # jags jagsModel = jags.model(file="model.txt",data=datalist,n.chains=3,n.adapt=500) update(jagsModel,n.iter=1000) codaSamples=coda.samples(jagsModel,variable.names=c("theta"),n.iter=5000) mcmcMat<-as.matrix(codaSamples) par(mfrow=c(2,2)) cols=c("orange", "skyblue","pink") # chain mcmc1<-as.mcmc(codaSamples[[1]]) mcmc2<-as.mcmc(codaSamples[[2]]) mcmc3<-as.mcmc(codaSamples[[3]]) plot(mcmc1,type='l') lines(mcmc2,col='red') lines(mcmc3,col='blue') # autocorrelation ac1=autocorr(mcmc1,lags=0:50) ac2=autocorr(mcmc2,lags=0:50) ac3=autocorr(mcmc3,lags=0:50) plot(ac1, type='o', pch = 20, col = cols[1], ylab = "Autocorrelation", xlab = "Lag") lines(ac2, type='o', pch = 20, col = cols[2]) lines(ac3, type='o', pch = 20, col = cols[3]) # shrink factor resALL=mcmc.list(mcmc1,mcmc2,mcmc3) gd1=gelman.plot(resALL, auto.layout = F) # density den1=density(mcmc1) den2=density(mcmc2) den3=density(mcmc3) plot(den1, type='l', col = cols[1], main = " ", xlab = "param. value",lwd=2.5) lines(den2, col = cols[2], lwd=2.5) lines(den3, col = cols[3], lwd=2.5) par(mfrow=c(1,1)) model.txt = " model { for ( i_data in 1:Ntotal ) { y[ i_data ] ~ dbern( theta[s[i_data]] ) } for ( i_s in 1:Nsubj) { theta[i_s] ~ dbeta( 2, 2 ) } }" writeLines(model.txt, "model.txt") dat<-read.csv("http://www.matsuka.info/univ/course_folder/z6N8z2N7.csv") y=dat$y s=as.numeric(dat$s) Ntotal=length(dat$y) Nsubj=length(unique(s)) datalist = list(y=y,s=s,Ntotal=Ntotal,Nsubj=Nsubj) jagsModel = jags.model(file="model.txt",data=datalist,n.chains=3,n.adapt=500) update(jagsModel,n.iter=1000) codaSamples=coda.samples(jagsModel,variable.names=c("theta"),n.iter=5000) mcmcMat<-as.matrix(codaSamples) par(mfrow=c(2,2)) cols=c("orange", "skyblue","pink") # chain mcmc1<-as.mcmc(codaSamples[[1]]) mcmc2<-as.mcmc(codaSamples[[2]]) mcmc3<-as.mcmc(codaSamples[[3]]) plot(temp1,type='l') lines(temp2,col='red') lines(temp3,col='blue') # autocorrelation ac1=autocorr(mcmc1,lags=0:50) ac2=autocorr(mcmc2,lags=0:50) ac3=autocorr(mcmc3,lags=0:50) plot(ac1, type='o', pch = 20, col = cols[1], ylab = "Autocorrelation", xlab = "Lag") lines(ac2, type='o', pch = 20, col = cols[2]) lines(ac3, type='o', pch = 20, col = cols[3]) # shrink factor resALL=mcmc.list(mcmc1,mcmc2,mcmc3) gd1=gelman.plot(resALL, auto.layout = F) # density den1=density(mcmc1) den2=density(mcmc2) den3=density(mcmc3) plot(den1, type='l', col = cols[1], main = " ", xlab = "param. value",lwd=2.5) lines(den2, col = cols[2], lwd=2.5) lines(den3, col = cols[3], lwd=2.5) par(mfrow=c(1,1)) model.txt = " model { for ( i in 1:Ntotal ) { y[i] ~ dnorm( mu , 1/sigma^2 ) } mu ~ dnorm( meanY , 1/(100*sdY)^2 ) sigma ~ dunif( sdY/1000 , sdY*1000 ) } " writeLines(model.txt, "model.txt") dat<-read.csv("http://www.matsuka.info/univ/course_folder/TwoGroupIQ.csv") y = dat$Score[dat$Group=="Smart Drug"] Ntotal = length(y) dataList = list(y = y, Ntotal = Ntotal, meanY = mean(y), sdY = sd(y)) jagsModel = jags.model("model.txt", data=dataList, n.chains=3, n.adapt=1000 ) update( jagsModel , n.iter=1000) codaSamples = coda.samples( jagsModel , variable.names=c("mu","sigma"), n.iter=5000, thin=5) mcmcMat<-as.matrix(codaSamples) # calculating & plotting normality par(mfrow=c(2,2)) HDI.plot(mcmcMat[,1]) hist(y,nclass=15,probability = T) x.temp = seq(40,200,0.1) n.plot = 100 randperm = sample(1:nrow(mcmcMat),n.plot) for (i.plot in 1:n.plot){ norm.temp=dnorm(x.temp,mean=mcmcMat[randperm[i.plot],1],sd=mcmcMat[randperm[i.plot],2]) lines(x.temp,norm.temp,col='orange') } HDI.plot(mcmcMat[,2]) # calculating & plotting effect size effect.size=(mcmcMat[,"mu"]-100)/mcmcMat[,"sigma"] HDI.plot(effect.size) # dat<-read.csv("http://www.matsuka.info/univ/course_folder/TwoGroupIQ.csv") y = dat$Score[dat$Group=="Smart Drug"] Ntotal = length(y) model.txt=" model { for ( i in 1:Ntotal ) { y[i] ~ dt( mu , 1/sigma^2 , nu ) } mu ~ dnorm( meanY , 1/(100*sdY)^2 ) sigma ~ dunif( sdY/1000 , sdY*1000 ) nu <- nuMinusOne+1 nuMinusOne ~ dexp(1/30.0) }" writeLines(model.txt, "model.txt") dataList = list(y = y, Ntotal = Ntotal, meanY = mean(y), sdY = sd(y)) jagsModel = jags.model("model.txt", data=dataList, n.chains=3, n.adapt=1000 ) update( jagsModel , n.iter=1000) codaSamples = coda.samples( jagsModel , variable.names=c("mu","sigma","nu"), n.iter=5000, thin=5) mcmcMat<-as.matrix(codaSamples) # calculating & plotting normality par(mfrow=c(3,2)) HDI.plot(mcmcMat[,1]) HDI.plot(mcmcMat[,3]) normality=log10(mcmcMat[,"nu"]) HDI.plot(normality) effect.size=(mcmcMat[,"mu"]-100)/mcmcMat[,"sigma"] HDI.plot(effect.size) hist(y,nclass=20,probability = T) n.plot = 100 randperm = sample(1:nrow(mcmcMat),n.plot) for (i.plot in 1:n.plot){ x.temp1 = seq(40,200,0.1) x.temp2 = (x.temp1 - mcmcMat[randperm[i.plot],1])/mcmcMat[randperm[i.plot],3] t.temp=dt(x.temp2,mcmcMat[randperm[i.plot],2])/mcmcMat[randperm[i.plot],3] lines(x.temp1,t.temp,col='orange') } par(mfrow=c(2,2)) plot(mcmcMat[,1],mcmcMat[,3],col='orange') plot(mcmcMat[,1],log10(mcmcMat[,2]),col='orange') plot(0,0,type='n') plot(log10(mcmcMat[,2]),mcmcMat[,3],col='orange') dat<-read.csv("http://www.matsuka.info/univ/course_folder/TwoGroupIQ.csv") y = dat$Score group = as.numeric(dat$Group) Ntotal = length(y) Ngroup = length(unique(group)) model.txt=" model { for ( i in 1:Ntotal ) { y[i] ~ dt( mu[group[i]] , 1/sigma[group[i]]^2 , nu ) } for (j in 1:Ngroup){ mu[j] ~ dnorm( meanY , 1/(100*sdY)^2 ) sigma[j] ~ dunif( sdY/1000 , sdY*1000 ) } nu <- nuMinusOne+1 nuMinusOne ~ dexp(1/29) }" writeLines(model.txt, "model.txt") dataList = list(y = y, Ntotal = Ntotal, meanY = mean(y), sdY = sd(y),Ngroup=Ngroup,group=group) jagsModel = jags.model("model.txt", data=dataList, n.chains=3, n.adapt=5000 ) update( jagsModel , n.iter=1000) codaSamples = coda.samples( jagsModel , variable.names=c("mu","sigma","nu"), n.iter=5000, thin=5) mcmcMat<-as.matrix(codaSamples) # plotting result par(mfrow=c(5,2)) HDI.plot(mcmcMat[,1],xlabel="placebo Mean") hist(y[dat$Group=="Placebo"],nclass=20,probability = T) n.plot = 100 randperm = sample(1:nrow(mcmcMat),n.plot) for (i.plot in 1:n.plot){ x.temp1 = seq(40,200,0.1) x.temp2 = (x.temp1 - mcmcMat[randperm[i.plot],1])/mcmcMat[randperm[i.plot],4] t.temp=dt(x.temp2,mcmcMat[randperm[i.plot],3])/mcmcMat[randperm[i.plot],4] lines(x.temp1,t.temp,col='orange') } HDI.plot(mcmcMat[,2],xlabel="smart drug Mean") hist(y[dat$Group=="Smart Drug"],nclass=20,probability = T) n.plot = 100 randperm = sample(1:nrow(mcmcMat),n.plot) for (i.plot in 1:n.plot){ x.temp1 = seq(40,200,0.1) x.temp2 = (x.temp1 - mcmcMat[randperm[i.plot],2])/mcmcMat[randperm[i.plot],5] t.temp=dt(x.temp2,mcmcMat[randperm[i.plot],3])/mcmcMat[randperm[i.plot],5] lines(x.temp1,t.temp,col='orange') } HDI.plot(mcmcMat[,4],xlabel="placebo scale") HDI.plot(mcmcMat[,2]-mcmcMat[,1],xlabel="Difference of Means") HDI.plot(mcmcMat[,5],xlabel="smart drug scale") HDI.plot(mcmcMat[,5]-mcmcMat[,4],xlabel="Difference of Scales") HDI.plot(log10(mcmcMat[,3]),xlabel="Normality") effect.size = (mcmcMat[,2]-mcmcMat[,1])/sqrt((mcmcMat[,5]^2+mcmcMat[,4]^2)/2) HDI.plot(effect.size,xlabel="effect size")
データ解析基礎論B 判別分析+
library(MASS) dat<-data.frame(writing=c(68,85,50,54,66,35,56,25,43,70), interview=c(65,80,95,70,75,55,65,75,50,40), cl=c(rep("A",5),rep("N",5))) dat.lda<-lda(cl~.,data=dat) intcpt = (dat.lda$scaling[1]*dat.lda$means[1,1] + dat.lda$scaling[2]*dat.lda$means[1,2] + dat.lda$scaling[1]*dat.lda$means[2,1] + dat.lda$scaling[2]*dat.lda$means[2,2])/2 z = as.matrix(dat[,1:2])%*%dat.lda$scaling-intcpt new.dim.slope = dat.lda$scaling[1]/dat.lda$scaling[2] disc.intcpt = intcpt / dat.lda$scaling[2] disc.slope = -dat.lda$scaling[1] / dat.lda$scaling[2] ggplot(dat, aes(x = writing, y= interview, color = cl)) + geom_point(size = 4) + geom_abline(aes(intercept = intcpt, slope = new.dim.slope )) + geom_abline(aes(intercept = disc.intcpt, slope = disc.slope ),color = "red") + xlim(30,100)+ylim(30,100) dat<-read.csv("http://matsuka.info/data_folder/tdkDA01.csv", header=T) dat.lda<-lda(class~.,dat) lda.pred<-predict(dat.lda,dat) table(lda.pred$class, dat$class) dat.lda<-lda(class~.,dat, CV=T) dat.cl = dat.lda$posterior[,1]>dat.lda$posterior[,2] table(dat.cl, dat$class) dat<-read.csv("http://matsuka.info/data_folder/tdkDA02.csv",header=T) dat.lda=lda(class~.,data=dat) lda.pred <- predict(dat.lda, dat) plot(dat.lda, dimen=3, col=as.numeric(lda.pred$class),cex=2) dat.km<-kmeans(dat[,1:6],5) table(lda.pred$class,dat.km$cluster) plot(dat,col=dat.km$cluster,pch=20) plot(dat.lda, dimen=2, col=as.numeric(lda.pred$class),cex=2) dat<-read.csv("http://www.matsuka.info/data_folder/tdkCFA.csv") dat1<-subset(dat,dat$popularity<5) dat2<-subset(dat,dat$popularity>4 & dat$popularity<6) dat3<-subset(dat,dat$popularity>6) dat1$popularity="LP";dat2$popularity="MP";dat3$popularity="VP" datT=rbind(dat1,dat2,dat3) datT.lda<-lda(popularity~.,datT) datT.pred<-predict(datT.lda,datT) table(datT.pred$class,datT$popularity) par(mfrow=c(1,2)) plot(datT.lda,col=c(rep('red',20),rep('blue',28),rep('green',29)),cex=1.5) plot(datT.lda,col=as.numeric(datT.pred$class),cex=1.5) par(mfrow=c(1,1)) library(nnet) dat<-read.csv("http://www.matsuka.info/data_folder/tdkReg01.csv") set.seed(5) x = dat[,1:3] y = dat[,4] dat.nnet = nnet(x,y, size = 150, linout= TRUE, maxit = 1000) nnet.pred <-predict(dat.nnet,dat) cor(dat.nnet$fitted.values,dat$sales)^2 dat.lm<-lm(sales~.,data=dat) plot(dat.nnet$fitted.values, dat$sales,pch=20,col='black') points(predict(dat.lm), dat$sales,pch=20,col='red') n.data = nrow(dat);n.sample = n.data*0.6; n.rep = 100 trainNN.cor = rep(0,n.rep); trainLM.cor = rep(0,n.rep) testNN.cor = rep(0,n.rep); testLM.cor = rep(0,n.rep) for (i.rep in 1:n.rep){ randperm = sample(1:n.data) train.idx = randperm[1:n.sample] test.idx = randperm[(n.sample+1):n.data] dat.nnet <- nnet(sales~.,size = 100, linout=T, maxit=1000, data = dat[train.idx,]) dat.lm <-lm(sales~.,data=dat[train.idx, ]) trainNN.cor[i.rep] <- cor(predict(dat.nnet,dat[train.idx, ]), dat[train.idx,]$sales) trainLM.cor[i.rep] <- cor(predict(dat.lm,dat[train.idx, ]), dat[train.idx,]$sales) testNN.cor[i.rep] <- cor(predict(dat.nnet,dat[test.idx, ]), dat[test.idx,]$sales) testLM.cor[i.rep] <- cor(predict(dat.lm,dat[test.idx, ]), dat[test.idx,]$sales) } print(c(mean(trainNN.cor,na.rm=T),mean(testNN.cor,na.rm=T))) print(c(mean(trainLM.cor,na.rm=T),mean(testLM.cor,na.rm=T))) n.data = nrow(dat);n.sample = n.data*0.6; n.rep = 100 trainNN.cor = rep(0,n.rep); trainLM.cor = rep(0,n.rep) testNN.cor = rep(0,n.rep); testLM.cor = rep(0,n.rep) for (i.rep in 1:n.rep){ randperm = sample(1:n.data) train.idx = randperm[1:n.sample] test.idx = randperm[(n.sample+1):n.data] dat.nnet <- nnet(sales~.,size = 30, linout=T,decay= 0.1, maxit=1000, data = dat[train.idx,]) dat.lm <-lm(sales~.,data=dat[train.idx, ]) trainNN.cor[i.rep] <- cor(predict(dat.nnet,dat[train.idx, ]), dat[train.idx,]$sales) trainLM.cor[i.rep] <- cor(predict(dat.lm,dat[train.idx, ]), dat[train.idx,]$sales) testNN.cor[i.rep] <- cor(predict(dat.nnet,dat[test.idx, ]), dat[test.idx,]$sales) testLM.cor[i.rep] <- cor(predict(dat.lm,dat[test.idx, ]), dat[test.idx,]$sales) } print(c(mean(trainNN.cor,na.rm=T),mean(testNN.cor,na.rm=T))) print(c(mean(trainLM.cor,na.rm=T),mean(testLM.cor,na.rm=T))) dat<-read.csv("http://matsuka.info/data_folder/tdkDA01.csv", header =T) dat.nnet<-nnet(class~.,dat,size=30,maxit=1000,decay=0.05) dat.pred<-predict(dat.nnet,dat,type="class") table(dat.pred,dat$class) dat.glm<-glm(class~., family="binomial",dat) glm.pred<-predict(dat.glm, dat, type="response")>0.5 table(glm.pred,dat$class) dat<-read.csv("http://www.matsuka.info/data_folder/cda7-16.csv") dat.nnet<-nnet(survival~., dat, size=30, maxit=1000, decay=0.01) dat.pred<-predict(dat.nnet,dat,type="class") table(dat.pred,dat$survival) Ns = summary(dat$survival) (Ns[1]/Ns[2])^-1 wts = rep(1,nrow(dat)) wts[which(dat$survival=="no")]=45 dat.nnet<-nnet(survival~., weights=wts, dat, size=30, maxit=1000, decay=0.01) dat.pred<-predict(dat.nnet,dat,type="class") table(dat.pred,dat$survival) dat<-read.csv("http://matsuka.info/data_folder/tdkDA02.csv",header=T) class.id<-class.ind(dat$class) x = dat[,1:6] dat.nnet<-nnet(x,class.id,size=30, maxit=1000, decay=0.01, softmax=TRUE) max.id = apply(dat.nnet$fitted.values,1,which.max) table(max.id,dat$class) dat<-read.table("http://www.matsuka.info/data_folder/tdkPCA01.txt") dat.nnet<-nnet(dat,dat,size=2, maxit=1000, decay=0.01, linout=TRUE) cor(dat.nnet$fitted.values,dat)
広域システム特別講義II DL with Keras
library(keras) ### iris data dat = iris x_train = dat[,1:3] %>% as.matrix() y_train <- dat[,4] %>% to_categorical() model_iris <- keras_model_sequential() %>% layer_dense(units=20, activation = "relu", input_shape = ncol(x_train)) %>% layer_dense(units = 10, activation = "relu") %>% layer_dense(units = 3, activation = "softmax") summary(model_iris) model_iris %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) model_iris %>% fit( x_train, y_train, epochs = 100, batch_size = 5 ) model_iris %>% evaluate(x_train,y_train) ### with vaidation history <- model_iris %>% fit(x_train, y_train, validation_split = 0.20, epochs=300, batch_size = 5, shuffle = T) plot(history) normalizer <- function(x) { min_x = apply(x,2,min) max_x = apply(x,2,max) num <- t(x) - min_x denom <- max_x - min_x normalized = t(num/denom) return (normalized) } x_trainN = normalizer(x_train) model_iris <- keras_model_sequential() %>% layer_dense(units=20, activation = "relu", input_shape = ncol(x_train)) %>% layer_dense(units = 10, activation = "relu") %>% layer_dense(units = 3, activation = "softmax") model_iris %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) history_N <- model_iris %>% fit(x_trainN, y_train, validation_split = 0.20, epochs=150, batch_size = 5, shuffle = T) plot(history_N) ### reuter imdb <- dataset_imdb(num_words = 10000) c(c(train_data, train_labels), c(test_data, test_labels)) %<-% imdb vectorize_sequences <- function(sequences, dimension = 10000) { results <- matrix(0, nrow = length(sequences), ncol = dimension) for (i in 1:length(sequences)) results[i, sequences[[i]]] <- 1 results } x_trainTEMP <- vectorize_sequences(train_data) x_test <- vectorize_sequences(test_data) y_trainTEMP <- as.numeric(train_labels) y_test <- as.numeric(test_labels) val_idx = 1:1000 x_val = x_trainTEMP[val_idx, ] y_val = y_trainTEMP[val_idx] x_train = x_trainTEMP[-val_idx, ] y_train = y_trainTEMP[-val_idx] original_model <- keras_model_sequential() %>% layer_dense(units = 16, activation = "relu", input_shape = c(10000)) %>% layer_dense(units = 16, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") original_model %>% compile( optimizer = "rmsprop", loss = "binary_crossentropy", metrics = c("accuracy") ) history_orig <- original_model %>% fit(x_train, y_train, epochs=20, batch_size = 512, validation_data = list(x_val, y_val)) plot(history_orig) original_model %>% evaluate(x_test, y_test) smaller_model <- keras_model_sequential() %>% layer_dense(units = 4, activation = "relu", input_shape = c(10000)) %>% layer_dense(units = 4, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") smaller_model %>% compile( optimizer = "rmsprop", loss = "binary_crossentropy", metrics = c("accuracy") ) history_small <- smaller_model %>% fit(x_train, y_train, epochs=20, batch_size = 512, validation_data = list(x_val, y_val)) plot(history_small) smaller_model %>% evaluate(x_test, y_test) bigger_model <- keras_model_sequential() %>% layer_dense(units = 512, activation = "relu", input_shape = c(10000)) %>% layer_dense(units = 512, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") bigger_model %>% compile( optimizer = "rmsprop", loss = "binary_crossentropy", metrics = c("accuracy") ) history_big <- bigger_model %>% fit(x_train, y_train, epochs=20, batch_size = 512, validation_data = list(x_val, y_val)) plot(history_big) model_L2 <- keras_model_sequential() %>% layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.0001), activation = "relu", input_shape = c(10000)) %>% layer_dense(units = 16, kernel_regularizer = regularizer_l2(0.0001), activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") model_L2 %>% compile( optimizer = "rmsprop", loss = "binary_crossentropy", metrics = c("accuracy") ) history_L2 <- model_L2 %>% fit(x_train, y_train, epochs=20, batch_size = 512, validation_data = list(x_val, y_val)) plot(history_L2) model_L2 %>% evaluate(x_test, y_test) model_DO <- keras_model_sequential() %>% layer_dense(units = 16,activation = "relu", input_shape = c(10000)) %>% layer_dropout(rate = 0.5) %>% layer_dense(units = 16,activation = "relu") %>% layer_dropout(rate = 0.5) %>% layer_dense(units = 1, activation = "sigmoid") model_DO %>% compile( optimizer = "rmsprop", loss = "binary_crossentropy", metrics = c("accuracy") ) history_DO <- model_DO %>% fit(x_train, y_train, epochs=20, batch_size = 512, validation_data = list(x_val, y_val)) plot(history_DO) model_DO %>% evaluate(x_test, y_test) ### MNIST mnist <- dataset_mnist() c(c(tr_img, tr_lab),c(te_img, te_lab)) %<-% mnist tr_img <- array_reshape(tr_img, c(60000,28,28,1)) tr_img = tr_img / 255 te_img <- array_reshape(te_img, c(10000,28,28,1)) te_img = te_img / 255 tr_lab = to_categorical(tr_lab) te_lab = to_categorical(te_lab) model <- keras_model_sequential() %>% layer_conv_2d(filter = 32, kernel_size = c(3,3), activation = "relu",input_shape = c(28,28,1)) %>% layer_max_pooling_2d(pool_size = c(2,2)) %>% layer_conv_2d(filter = 64, kernel_size = c(3,3),activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2,2)) %>% layer_flatten() %>% layer_dense(units =64, activation = "relu") %>% layer_dense(units =10, activation = "softmax") model %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) history <- model %>% fit( tr_img, tr_lab, epochs = 5, validation_split = 0.20, batch_size = 64 ) model %>% evaluate(te_img, te_lab) original_dataset_dir <- "~/Downloads/dogs-vs-cats/train" base_dir <- "~/Downloads/cats_and_dogs_small/" dir.create(base_dir) train_dir <- file.path(base_dir, "train") dir.create(train_dir) validation_dir <- file.path(base_dir, "validation") dir.create(validation_dir) test_dir <- file.path(base_dir, "test") dir.create(test_dir) train_cats_dir <- file.path(train_dir, "cats") dir.create(train_cats_dir) train_dogs_dir <- file.path(train_dir, "dogs") dir.create(train_dogs_dir) validation_cats_dir <- file.path(validation_dir, "cats") dir.create(validation_cats_dir) validation_dogs_dir <- file.path(validation_dir, "dogs") dir.create(validation_dogs_dir) test_cats_dir <- file.path(test_dir, "cats") dir.create(test_cats_dir) test_dogs_dir <- file.path(test_dir, "dogs") dir.create(test_dogs_dir) fnames <- paste0("cat.", 1:1000, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(train_cats_dir)) fnames <- paste0("cat.", 1001:1500, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(validation_cats_dir)) fnames <- paste0("cat.", 1501:2000, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(test_cats_dir)) fnames <- paste0("dog.", 1:1000, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(train_dogs_dir)) fnames <- paste0("dog.", 1001:1500, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(validation_dogs_dir)) fnames <- paste0("dog.", 1501:2000, ".jpg") file.copy(file.path(original_dataset_dir, fnames), file.path(test_dogs_dir)) model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(150, 150, 3)) %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_flatten() %>% layer_dense(units = 512, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") summary(model) model %>% compile( loss = "binary_crossentropy", optimizer = optimizer_rmsprop(lr = 1e-4), metrics = c("acc") ) train_datagen <- image_data_generator(rescale = 1/255) validation_datagen <- image_data_generator(rescale = 1/255) train_generator <- flow_images_from_directory( train_dir, train_datagen, target_size = c(150, 150), batch_size = 20, class_mode = "binary" ) validation_generator <- flow_images_from_directory( validation_dir, validation_datagen, target_size = c(150, 150), batch_size = 20, class_mode = "binary" ) history <- model %>% fit_generator( train_generator, steps_per_epoch = 100, epochs = 10, validation_data = validation_generator, validation_steps = 50 ) model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, kernel_size = c(3, 3), activation = "relu", input_shape = c(150, 150, 3)) %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 3), activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 2)) %>% layer_flatten() %>% layer_dropout(rate = 0.5) %>% layer_dense(units = 512, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") model %>% compile( loss = "binary_crossentropy", optimizer = optimizer_rmsprop(lr = 1e-4), metrics = c("acc") ) datagen <- image_data_generator( rescale = 1/255, rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = TRUE ) test_datagen <- image_data_generator(rescale = 1/255) train_generator <- flow_images_from_directory( train_dir, datagen, target_size = c(150, 150), batch_size = 32, class_mode = "binary" ) validation_generator <- flow_images_from_directory( validation_dir, test_datagen, target_size = c(150, 150), batch_size = 32, class_mode = "binary" ) history <- model %>% fit_generator( train_generator, steps_per_epoch = 100, epochs = 10, validation_data = validation_generator, validation_steps = 50 ) datagen <- image_data_generator( rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = FALSE, fill_mode = "nearest" ) conv_base <- application_vgg16( weights = "imagenet", include_top = FALSE, input_shape = c(150, 150, 3) ) summary(conv_base) model <- keras_model_sequential() %>% conv_base %>% layer_flatten() %>% layer_dense(units = 256, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid") train_datagen = image_data_generator( rescale = 1/255, rotation_range = 40, width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = TRUE, fill_mode = "nearest" ) test_datagen <- image_data_generator(rescale = 1/255) train_generator <- flow_images_from_directory( train_dir, train_datagen, target_size = c(150, 150), batch_size = 20, class_mode = "binary" ) validation_generator <- flow_images_from_directory( validation_dir, test_datagen, target_size = c(150, 150), batch_size = 20, class_mode = "binary" ) model %>% compile( loss = "binary_crossentropy", optimizer = optimizer_rmsprop(lr = 2e-5), metrics = c("accuracy") ) history <- model %>% fit_generator( train_generator, steps_per_epoch = 100, epochs = 3, validation_data = validation_generator, validation_steps = 50 ) unfreeze_weights(conv_base, from = "block5_conv1") model %>% compile( loss = "binary_crossentropy", optimizer = optimizer_rmsprop(lr = 1e-5), metrics = c("accuracy") ) history <- model %>% fit_generator( train_generator, steps_per_epoch = 100, epochs = 10, validation_data = validation_generator, validation_steps = 50 ) test_generator <- flow_images_from_directory( test_dir, test_datagen, target_size = c(150, 150), batch_size = 20, class_mode = "binary" ) model %>% evaluate_generator(test_generator, steps = 50)