multi.forwd <- function(x,y){
return(x*y)
}
multi.bckwd <- function(x, y, dout){
dx = dout * y
dy = dout * x
return(list(dx = dx, dy = dy))
}
apple = 100; n.apple = 2; tax = 1.1
apple.pre.tax = multi.forwd(apple, n.apple)
apple.post.tax = multi.forwd(apple.pre.tax, tax)
dprice = 1
d.apple.post.tax = multi.bckwd(apple.pre.tax, tax, dprice)
d.apple = multi.bckwd(apple, n.apple, d.apple.post.tax$dx)$dx
d.n.apple = multi.bckwd(apple, n.apple, d.apple.post.tax$dx)$dy
add.forwd <- function(x,y){
return(x + y)
}
add.bckwd <- function(x, y, dout){
dx = dout
dy = dout
return(list(dx = dx, dy = dy))
}
apple = 100; n.apple = 2; tax = 1.1
orange = 150; n.orange = 3;
apple.price = multi.forwd(apple, n.apple)
orange.price = multi.forwd(orange, n.orange)
all.price = add.forwd(apple.price, orange.price)
price = multi.forwd(all.price, tax)
dprice = 1
d.all.price = multi.bckwd(all.price, tax, dprice)
d.apple.price = add.bckwd(apple.price, orange.price, d.all.price$dx)$dx
d.orange.price = add.bckwd(orange, n.orange.price, d.all.price$dx)$dy
d.apple = multi.bckwd(apple, n.apple, d.apple.price)$dx
d.n.apple = multi.bckwd(apple, n.apple, d.apple.price)$dy
d.orange = multi.bckwd(orange, n.orange, d.orange.price)$dx
d.n.orange = multi.bckwd(orange, n.orange, d.orange.price)$dy
relu.forwd <- function(x){
return(pmax(x,0))
}
relu.bckwd <- function(x, dout){
dout[which(x <= 0)] = 0
return(dout)
}
sigmoid.forwd <- function(x){
return(1/(1+exp(-x)))
}
sigmoid.bckwd <- function(x, dout){
y = sigmoid.forwd(x)
return(dout*(1-y)*y)
}
affine.forwd <- function(x, W, b){
return(x%*%W + matrix(1, nrow = nrow(x), ncol = 1)%*%b)
}
affine.bckwd <- function(x, W, b, dout){
dx = dout%*%t(W)
dW = t(x)%*%dout
db = colSums(dout)
return(list(dx = dx, dW = dW, db = db))
}
softmax.forwd <- function(x, target){
max.x = apply(x,1,max)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
y = exp(x)/rowSums(exp(x))
delta = 1e-7;
R = nrow(as.matrix(y))
return(-sum(target*log(y + delta))/R)
}
softmax.bckwd <- function(x, target, dout = 1){
max.x = apply(x, 1, max)
R = nrow(x)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
y = exp(x)/rowSums(exp(x))
return((y-target)/R)
}
init.network <- function(n.neurons){
n.layer = length(n.neurons)
W = list(); b = list()
for (i.layer in 1:(n.layer-1)){
W[[i.layer]] = matrix(rnorm(n.neurons[i.layer]*n.neurons[(i.layer+1)],sd = 0.1),
nrow=n.neurons[i.layer])
b[[i.layer]] = matrix(rnorm(n.neurons[(i.layer+1)],sd = 0.1), nrow = 1)
}
return(list(W = W,b = b))
}
sigmoid.func <- function(x){
return(1/(1+exp(-x)))
}
relu.func <- function(x){
y = apply(x,2,function(x) pmax(x,0))
return(y)
}
activation <- function(A, actFun){
if (actFun == "sigmoid"){
return(sigmoid.func(A))
}
if (actFun == "relu"){
return(relu.func(A))
}
if (actFun == "softmax"){
return(softmax(A))
}
}
feedforward <- function(network, x, actFun) {
n.layer <- length(network$W)
batch.size = nrow(x)
for (i.layer in 1:n.layer){
A = x%*%network$W[[i.layer]]
+ matrix(1,nrow=batch.size,ncol = 1)%*%network$b[[i.layer]]
x = activation(A, actFun[i.layer])
}
return(x)
}
cross.entropy = function(y, target){
delta = 1e-7;
R = nrow(as.matrix(y))
return(-sum(target*log(y + delta))/R)
}
loss.network = function(params, x, t, actFun){
y = feedforward(params,x,actFun)
return(cross.entropy(y, t))
}
以下は課題が完了するまでは見ないように心がけててください。
########################################################################
########################################################################
########################################################################
train.x = as.matrix(iris[,1:4])
train.y.temp = as.numeric(iris[,5])
train.y = matrix(0,nrow = nrow(train.x), ncol =3)
train.y[which(train.y.temp==1), 1]=1
train.y[which(train.y.temp==2), 2]=1
train.y[which(train.y.temp==3), 3]=1
params = init.network(c(4,15,3))
batch_size = 10; n.iter =5000; lambda =0.05
n.train = nrow(train.x)
loss = rep(0,n.iter)
for (i.iter in 1:n.iter){
batch_mask = sample(1:n.train, batch_size)
x.batch = train.x[batch_mask,]
t.batch = train.y[batch_mask,]
a1 = affine.forwd(x.batch,params$W[[1]],params$b[[1]])
z1 = sigmoid.forwd(a1)
a2 = affine.forwd(z1,params$W[[2]],params$b[[2]])
z2 = softmax.forwd(a2,t.batch)
dwSM = softmax.bckwd(a2, t.batch, 1)
dwA2 = affine.bckwd(a1,params$W[[2]],params$b[[2]],dwSM)
dwSG = sigmoid.bckwd(a1,dwA2$dx)
dwA1 = affine.bckwd(x.batch,params$W[[1]],params$b[[1]],dwSG)
params$W[[2]] = params$W[[2]] - lambda*dwA2$dW
params$b[[2]] = params$b[[2]] - lambda*dwA2$db
params$W[[1]] = params$W[[1]] - lambda*dwA1$dW
params$b[[1]] = params$b[[1]] - lambda*dwA1$db
loss[i.iter] = loss.network(params,x.batch,t.batch,c("sigmoid","softmax"))
}
plot(loss,type='l', xlab = "trial")
# MNIST
train <- read.csv('~/courses/CogMod/CMA2017/MNSTtrain.csv', header=TRUE)
test <- read.csv('~/courses/CogMod/CMA2017/MNSTtest.csv', header=TRUE)
train <- data.matrix(train)
test <- data.matrix(test)
train.x <- as.matrix(train[,-1]/255)
train.y.temp <- train[,1]
train.y = matrix(0,nrow = nrow(train.x), ncol = 10)
for (i in 1:nrow(train.x)){
train.y[i,(train.y.temp[i]+1)]=1
}
params = init.network(c(784,50,10))
batch_size = 100; n.iter =5000; lambda =0.05
n.train = nrow(train.x)
loss = rep(0,n.iter)
for (i.iter in 1:n.iter){
batch_mask = sample(1:n.train, batch_size)
x.batch = train.x[batch_mask,]
t.batch = train.y[batch_mask,]
a1 = affine.forwd(x.batch,params$W[[1]],params$b[[1]])
z1 = sigmoid.forwd(a1)
a2 = affine.forwd(z1,params$W[[2]],params$b[[2]])
z2 = softmax.forwd(a2,t.batch)
dwSM = softmax.bckwd(a2, t.batch, 1)
dwA2 = affine.bckwd(a1,params$W[[2]],params$b[[2]],dwSM)
dwSG = sigmoid.bckwd(a1,dwA2$dx)
dwA1 = affine.bckwd(x.batch,params$W[[1]],params$b[[1]],dwSG)
params$W[[2]] = params$W[[2]] - lambda*dwA2$dW
params$b[[2]] = params$b[[2]] - lambda*dwA2$db
params$W[[1]] = params$W[[1]] - lambda*dwA1$dW
params$b[[1]] = params$b[[1]] - lambda*dwA1$db
loss[i.iter] = loss.network(params,x.batch,t.batch,c("sigmoid","softmax"))
}
plot(loss,type='l', xlab = "trial")
apply((feedforward(params, train.x[1:10,], c("sigmoid", "softmax"))),1,which.max)
train.y.temp[1:10]+1
### MNIST 3-layer
params = init.network(c(784,50,50,10))
batch_size = 100; n.iter =5000; lambda =0.05
n.train = nrow(train.x)
loss = rep(0,n.iter)
for (i.iter in 1:n.iter){
batch_mask = sample(1:n.train, batch_size)
x.batch = train.x[batch_mask,]
t.batch = train.y[batch_mask,]
a1 = affine.forwd(x.batch,params$W[[1]],params$b[[1]])
z1 = sigmoid.forwd(a1)
a2 = affine.forwd(z1,params$W[[2]],params$b[[2]])
z2 = sigmoid.forwd(a2)
a3 = affine.forwd(z2,params$W[[3]],params$b[[3]])
z3 = softmax.forwd(a3,t.batch)
dwSM = softmax.bckwd(a3, t.batch, 1)
dwA3 = affine.bckwd(a2,params$W[[3]],params$b[[3]],dwSM)
dwSG2 = sigmoid.bckwd(a2,dwA3$dx)
dwA2 = affine.bckwd(a1,params$W[[2]],params$b[[2]],dwSG2)
dwSG1 = sigmoid.bckwd(a1,dwA2$dx)
dwA1 = affine.bckwd(x.batch,params$W[[1]],params$b[[1]],dwSG1)
params$W[[3]] = params$W[[3]] - lambda*dwA3$dW
params$b[[3]] = params$b[[3]] - lambda*dwA3$db
params$W[[2]] = params$W[[2]] - lambda*dwA2$dW
params$b[[2]] = params$b[[2]] - lambda*dwA2$db
params$W[[1]] = params$W[[1]] - lambda*dwA1$dW
params$b[[1]] = params$b[[1]] - lambda*dwA1$db
loss[i.iter] = loss.network(params,x.batch,t.batch,c("sigmoid","sigmoid","softmax"))
}
plot(loss,type='l', xlab = "trial")
pred<-apply((feedforward(params, train.x, c("sigmoid","sigmoid", "softmax"))),
1, which.max)
table(pred,train.y+1)
Monthly Archives: May 2017
データ解析基礎論A Week06
# 2017 week 06
#
# regression
dat<-read.csv("http://www.matsuka.info/data_folder/hwsk8-17-6.csv")
plot(ani~otouto,data=dat,xlab="Score of Younger Brother",
ylab = "Score of Elder Brother", pch=20,cex=2,
xlim=c(5,27),ylim = c(5,27))
dat.lm <- lm(ani~otouto, data=dat)
summary(dat.lm)
abline(dat.lm, col = 'red',lwd = 2.5)
# two sample t-test
boxplot(dat,col=c('skyblue','coral'),ylab = "score")
t.test(dat$ani, dat$otouto, var.equal=T)
dat2<-data.frame(score = c(dat$ani, dat$otouto),order=c(rep("ani",10),rep("otouto",10)))
plot(dat2$score~as.numeric(dat2$order),pch=20,xlab="order",
ylab="score",xlim=c(0.5,2.5),cex=2,xaxt="n")
axis(1,c(1,2),c("ani","otouto"))
dat2.lm<-lm(score~order,data=dat2)
abline(dat2.lm,col='red',lwd=3)
# one sample t-test
dat.D = dat$ani - dat$otouto
boxplot(dat.D,col="skyblue",ylab="Difference")
t.test(dat.D)
dat.D.lm<-lm(dat.D~1)
plot(dat.D~rep(1,10),pch=20,xlab="",ylab="Difference",cex=3)
summary(dat.D.lm)
# plotting errors
plot(ani~otouto,data=dat,xlab="Score of Younger Brother",
ylab = "Score of Elder Brother", pch=20,cex=2,
xlim=c(5,27),ylim = c(5,27))
dat.lm <- lm(ani~otouto, data=dat)
abline(h=mean(dat$ani),lty=2,col="green",lwd=3)
abline(dat.lm,col='red',lwd=3)
pred.lm<-predict(dat.lm)
for (i.ani in 1:10){
lines(rep(dat$otouto[i.ani],2),c(dat$ani[i.ani],pred.lm[i.ani]),
col='blue',lwd=3)
}
# multiple regression
dat<-read.csv("http://www.matsuka.info/data_folder/tdkReg01.csv")
dat.regALL<-lm(sales~price+design+material,data=dat)
# ANCOVA
dat<-read.csv("http://www.matsuka.info/data_folder/ancova01.csv")
dat$pretest=dat$pretest*0.1
認知情報解析 ch04 解答例
init.network <- function(n.neurons){
n.layer = length(n.neurons)
W = list(); b = list()
for (i.layer in 1:(n.layer-1)){
W[[i.layer]] = matrix(rnorm(n.neurons[i.layer]*n.neurons[(i.layer+1)],sd = 0.1),
nrow=n.neurons[i.layer])
b[[i.layer]] = matrix(rnorm(n.neurons[(i.layer+1)],sd = 0.1), nrow = 1)
}
return(list(W = W,b = b))
}
sigmoid.func <- function(x){
return(1/(1+exp(-x)))
}
relu.func <- function(x){
y = apply(x,2,function(x) pmax(x,0))
return(y)
}
activation <- function(A, actFun){
if (actFun == "sigmoid"){
return(sigmoid.func(A))
}
if (actFun == "relu"){
return(relu.func(A))
}
if (actFun == "softmax"){
return(softmax(A))
}
}
softmax<- function(x){
max.x = apply(x,1,max)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
return(exp(x)/rowSums(exp(x)))
}
feedforward <- function(network, x, actFun) {
n.layer <- length(network$W)
batch.size = nrow(x)
for (i.layer in 1:n.layer){
A = x%*%network$W[[i.layer]]
+ matrix(1,nrow=batch.size,ncol = 1)%*%network$b[[i.layer]]
x = activation(A, actFun[i.layer])
}
return(x)
}
cross.entropy = function(y, target){
delta = 1e-7;
R = nrow(as.matrix(y))
return(-sum(target*log(y + delta))/R)
}
loss.network = function(params, x, t, actFun){
y = feedforward(params,x,actFun)
return(cross.entropy(y, t))
}
numerical.grad <- function(func, params, x, t, actFun) {
# input args
# func: name of objective function
# params: list of parameters (W & b)
# x : input
# t : target output
# actFun: activation function
##############################################
h = 1e-4
n.list = length(params)
grad = params
for (i.list in 1:n.list) {
R = nrow(params$W[[i.list]])
C = ncol(params$W[[i.list]])
grad$W[[i.list]] = matrix(0, R, C)
grad$b[[i.list]] = matrix(0, nrow = 1, C)
for (i.col in 1:C) {
for (i.row in 1:R) {
temp.w = params$W[[i.list]][i.row, i.col]
params$W[[i.list]][i.row, i.col] = temp.w + h
plusH = do.call(func, list(params, x, t, actFun))
params$W[[i.list]][i.row, i.col] = temp.w - h
minusH = do.call(func, list(params, x, t, actFun))
grad$W[[i.list]][i.row, i.col] = (plusH - minusH) / (2 * h)
params$W[[i.list]][i.row, i.col] = temp.w
}
temp.b = params$b[[i.list]][i.col]
params$b[[i.list]][i.col] = temp.b + h
plusH = do.call(func, list(params, x, t, actFun))
params$b[[i.list]][i.col] = temp.b - h
minusH = do.call(func, list(params, x, t, actFun))
grad$b[[i.list]][i.col] = (plusH - minusH) / (2 * h)
params$b[[i.list]][i.col] = temp.b
}
}
return(grad)
}
train.x = as.matrix(iris[,1:4])
train.y.temp = as.numeric(iris[,5])
train.y = matrix(0,nrow = nrow(train.x), ncol =3)
train.y[which(train.y.temp==1), 1]=1
train.y[which(train.y.temp==2), 2]=1
train.y[which(train.y.temp==3), 3]=1
n.neurons = c(4,15,3)
params = init.network(n.neurons)
batch_size = 50; n.iter =2000; lambda =0.05
n.train = nrow(train.x)
loss = rep(0,n.iter)
n.layer = length(params$W)
for (i.iter in 1:n.iter){
batch_mask = sample(1:n.train, batch_size)
x.batch = train.x[batch_mask,]
t.batch = train.y[batch_mask,]
dW = numerical.grad("loss.network",params,x.batch,t.batch,c("sigmoid","softmax"))
for (i.layer in 1:n.layer){
params$W[[i.layer]] = params$W[[i.layer]] - lambda*dW$W[[i.layer]]
params$b[[i.layer]] = params$b[[i.layer]] - lambda*dW$b[[i.layer]]
}
loss[i.iter] = loss.network(params,x.batch,t.batch,c("sigmoid","softmax"))
}
plot(loss,type='l')
データ解析基礎論A Week05 t検定
dat<-read.csv("http://www.matsuka.info/data_folder/datWA01.txt")
mean.M <-mean(dat$h[dat$gender=="M"])
sigma = 10
n.M = length(dat$h[dat$gender=="M"])
z.value=(mean.M-171)/(sqrt(sigma/n.M))
(1-pnorm(abs(z.value)))*2
ssize = c(24,25,26,23.5,25,27,24,22,27.5,28)
ssize.mean = mean(ssize)
ssize.var = var(ssize)
N = 10
t.value=(ssize.mean-24)/(sqrt(ssize.var/N))
(1-pt(abs(t.value),df=9))*2
h.mean.M <-mean(dat$h[dat$gender=="M"])
h.var.M <- var(dat$h[dat$gender=="M"])
n.M = length(dat$h[dat$gender=="M"])
t.value=(h.mean.M-171)/(sqrt(h.var.M/n.M))
(1-pt(abs(t.value),df = (n.M-1)))*2
# RCMD
A=c(12,19,10,10,14,18,15,11,16)
B=c(15,20,16,14,17,16,12,12,19)
d=A-B
tValue<-mean(d)/sqrt(var(d)/length(d))
(1-pt(abs(tValue), df=8))*2
t.test(d,mu=0)
X1=c(78,70,66,76,78,76,88,76)
X2=c(76,72,60,72,70,72,84,70)
t.value=(mean(X1)-mean(X2))/sqrt((var(X1)+var(X2))/8)
2*(1-pt(abs(t.value),14))
認知情報解析 ch04
MSE <- function(target, y){
return(0.5*sum((target-y)^2))
}
t = rep(0,10)
t[3]=1
y = c(0.1, 0.05, 0.6, 0, 0.05, 0.1, 0, 0.1, 0, 0)
x = seq(0,1,0.01)
plot(x,-log(x),lwd = 2)
cross.entropy = function(y, target){
delta = 1e-7;
R = nrow(as.matrix(y))
return(-sum(target*log(y + delta))/R)
}
numerical.diff = function(func, x){
h = 1e-4
plusH = do.call(func,list(x+h))
minusH = do.call(func,list(x-h))
num.diff = (plusH - minusH)/(2*h)
return(num.diff)
}
func01 = function(x){
return(0.01*x^2+0.1*x)
}
x = seq(0,20,0.1)
y = func01(x)
plot(x,y,xlab ="x", ylab = "f(x)",type = "l",lwd =2)
ND.5 = numerical.diff('func01',5)
abline(a = func01(5)-ND.5*5, b = ND.5, col = 'red', lwd =2)
abline(v = 5, lty = 2, col = 'red')
ND.10 = numerical.diff('func01',10)
abline(a = func01(10)-ND.10*10, b = ND.10, col = 'blue',lwd = 2)
abline(v = 10, lty = 2, col = 'blue')
func02 = function(x0, x1){
return(x0^2 + x1^2)
}
func02.x0 = function(x0){
return(x0^2)
}
func02.x1 = function(x1){
return(x1^2)
}
func02R = function(x){
return(x[1]^2 + x[2]^2)
}
numerical.grad <- function(func, x){
h = 1e-4
R = nrow(x)
C = ncol(x)
grad = matrix(0, R, C)
for (i.col in 1:C){
for (i.row in 1:R){
temp.x = x[i.row,i.col]
x[i.row, i.col] = temp.x + h
plusH = do.call(func, list(x))
x[i.row, i.col] = temp.x - h
minusH = do.call(func,list(x))
grad[i.row, i.col] = (plusH - minusH)/(2*h)
x[i.row, i.col] = temp.x
}
}
return(grad)
}
numerical.grad("func02R",matrix(c(3,4),nrow=1))
numerical.grad("func02R",matrix(c(0,4),nrow=1))
numerical.grad("func02R",matrix(c(3,0),nrow=1))
require(plot3D)
x = seq(-2,2,0.2)
y = seq(-2,2,0.2)
M = mesh(x,y)
R = nrow(M$x)
C = nrow(M$x)
scaling = 0.05
plot(c(),c(),xlim = c(-2,2),ylim=c(-2,2))
for (i.col in 1:C){
for (i.row in 1:R){
ng = numerical.grad("func02R",matrix(c(M$x[i.row,i.col],M$y[i.row,i.col]),nrow=1))
arrows(M$x[i.row,i.col],M$y[i.row,i.col],
(M$x[i.row,i.col]-ng[1]*scaling),(M$y[i.row,i.col]-ng[2]*scaling),
length = 0.05)
}
}
grad.desc <- function(func, init.x, lr, n.iter){
x = init.x
for (i.iter in 1:n.iter) {
grad = numerical.grad(func, x)
x = x - lr*grad
}
return(x)
}
x.init = matrix(c(-3,4),nrow = 1)
grad.desc("func02R",x.init,0.1,100)
x = seq(-4,4,0.2)
y = seq(-4,4,0.2)
M = mesh(x,y)
Z = as.vector(M$x^2)+as.vector(M$y^2)
Z.mesh = matrix(Z,nrow(M$x))
contour(x,y,Z.mesh,drawlabels = F)
grad.desc2 <- function(func, init.x, lr, n.iter){
x = init.x
x.hist = init.x
for (i.iter in 1:n.iter) {
grad = numerical.grad(func, x)
x = x - lr*grad
x.hist = rbind(x.hist,x)
}
return(x.hist)
}
gd = grad.desc2("func02R",x.init,0.1,100)
points(gd,col = 'green',pch=20)
# manual implementation
w = matrix(c(0.47355232,0.85557411,0.9977393,0.03563661,0.84668094,0.69422093),nrow=2)
x = matrix(c(0.6, 0.9), nrow=1)
t = c(0,0,1)
nn.predict <- function(w,x){
return(x%*%w)
}
loss.func = function(w, x, t){
pred = nn.predict(w,x)
y = softmax.func(pred)
return(cross.entropy(y, t))
}
numerical.gradCE <- function(func, w, x, t){
# input args
# func: name of function
# w : weight
# x : input
# t : target output
##############################################
h = 1e-4
R = nrow(w)
C = ncol(w)
grad = matrix(0, R, C)
for (i.col in 1:C){
for (i.row in 1:R){
temp.w = w[i.row,i.col]
w[i.row, i.col] = temp.w + h
plusH = do.call(func, list(w,x,t))
w[i.row, i.col] = temp.w - h
minusH = do.call(func,list(w,x,t))
grad[i.row, i.col] = (plusH - minusH)/(2*h)
w[i.row, i.col] = temp.w
}
}
return(grad)
}
dW = numerical.gradCE("loss.func",w,x,t)
### ch 4.5 2-layer NN ###
init.2LN <- function(n.input, n.hidden, n.output, w.std = 0.01){
W1 = matrix(rnorm(n.input*n.hidden,0,w.std),nrow = n.input)
B1 = matrix(rnorm(n.hidden,0,w.std),nrow =1)
W2 = matrix(rnorm(n.hidden*n.output,0,w.std),nrow = n.hidden)
B2 = matrix(rnorm(n.output,0,w.std),nrow =1)
return(list(W1 = W1, B1 = B1, W2 = W2, B2 = B2))
}
softmax.2LN <- function(x){
max.x = apply(x,1,max)
C = ncol(x)
x = x - max.x%*%matrix(1,nrow=1,ncol=C)
return(exp(x)/rowSums(exp(x)))
}
sigmoid.func <- function(x){
return(1/(1+exp(-x)))
}
pred.2LN <- function(params, x){
NR = nrow(x)
a1 = x%*%params$W1 + matrix(1,nrow = NR)%*%params$B1
z1 = sigmoid.func(a1)
a2 = z1%*%params$W2 + matrix(1,nrow = NR)%*%params$B2
y = softmax.2LN(a2)
return(y)
}
loss.2LN = function(params, x, t){
y = pred.2LN(params,x)
return(cross.entropy(y, t))
}
numerical.grad2LN <- function(func, params, x, t) {
# input args
# func: name of function
# w : weight
# x : input
# t : target output
##############################################
h = 1e-4; n.list = length(params); grad = params
for (i.list in 1:n.list) {
R = nrow(params[[i.list]])
C = ncol(params[[i.list]])
grad[[i.list]] = matrix(0, R, C)
for (i.col in 1:C) {
for (i.row in 1:R) {
temp.w = params[[i.list]][i.row, i.col]
params[[i.list]][i.row, i.col] = temp.w + h
plusH = do.call(func, list(params, x, t))
params[[i.list]][i.row, i.col] = temp.w - h
minusH = do.call(func, list(params, x, t))
grad[[i.list]][i.row, i.col] = (plusH - minusH) / (2 * h)
params[[i.list]][i.row, i.col] = temp.w
}
}
}
return(grad)
}
## example using IRIS data set
train.x = as.matrix(iris[,1:4])
train.y.temp = as.numeric(iris[,5])
train.y = matrix(0,nrow = nrow(train.x), ncol =3)
train.y[which(train.y.temp==1), 1]=1
train.y[which(train.y.temp==2), 2]=1
train.y[which(train.y.temp==3), 3]=1
params = init.2LN(4,15,3,0.01)
batch_size = 7; n.iter =2000; lambda =0.05
n.train = nrow(train.x)
loss = rep(0,n.iter)
for (i.iter in 1:n.iter){
batch_mask = sample(1:n.train, batch_size)
x.batch = train.x[batch_mask,]
t.batch = train.y[batch_mask,]
dW = numerical.grad2LN("loss.2LN",params,x.batch,t.batch)
params$W1 = params$W1 - lambda*dW$W1
params$B1 = params$B1 - lambda*dW$B1
params$W2 = params$W2 - lambda*dW$W2
params$B2 = params$B2 - lambda*dW$B2
loss[i.iter] = loss.2LN(params,x.batch,t.batch)
}
認知情報解析・課題1・解答例
relu.func <- function(x){
y = apply(x,2,function(x) pmax(x,0))
return(y)
}
sigmoid.func <- function(x){
return(1/(1+exp(-x)))
}
init.network <- function(n.neurons){
n.layer = length(n.neurons)
W = list(); b = list()
for (i.layer in 1:(n.layer-1)){
W[[i.layer]] =
matrix(rnorm(n.neurons[i.layer]*n.neurons[(i.layer+1)]),nrow=n.neurons[i.layer])
b[[i.layer]] = matrix(rnorm(n.neurons[(i.layer+1)]), nrow = 1)
}
return(list(W = W,b = b))
}
activation <- function(A, actFun){
if (actFun == "sigmoid"){
return(sigmoid.func(A))
}
if (actFun == "relu"){
return(relu.func(A))
}
}
feedforward <- function(network, x, actFun) {
n.layer <- length(network$W)
batch.size = nrow(x)
for (i.layer in 1:n.layer){
A = x%*%network$W[[i.layer]] +
matrix(1,nrow=batch.size,ncol = 1)%*%network$b[[i.layer]]
x = activation(A, actFun[i.layer])
}
return(x)
}
データ解析基礎論a Week04
nSample=10;nRep=10^5;
CLT.unif <- function(nSample, nRep) {
x=matrix(runif(nSample*nRep),nrow=nSample);
x.means<-colMeans(x)
hist(x.means,50,main='Distribution of Means of Uniform Distribution',
xlab='Means', probability=T)
x.means.dens<-density(x.means)
lines(x.means.dens,lwd=3,lty=1,col='red')
x2=seq(0,1,0.001);CLT=dnorm(x2,mean=0.5,sd=(sqrt(1/12))/(sqrt(nSample)))
lines(x2,CLT,lwd=3,lty=3,col='cyan')
legend("topright",c("Density of Actual Means","Normal Distribution"),
lty=c(1,3), col=c('red','cyan'),lwd=3)
}
> CLT.unif(10,100000)