課題 WAA12はここにあります。
解答例はここにあります。
過去のテストの例はデータ解析基礎論のページにあります。
Monthly Archives: July 2017
データ解析基礎論A week12
dat<-read.csv("http://peach.l.chiba-u.ac.jp/course_folder/datW03R.txt") means<-tapply(dat$shoesize,list(dat$gender, dat$affil),mean) Ns<-tapply(dat$shoesize,list(dat$gender, dat$affil),length) sds<-tapply(dat$shoesize,list(dat$gender, dat$affil),sd) sems<-sds/sqrt(Ns) plot(c(0,1),means[,1],type='o',col='skyblue', xlim=c(-0.1,1.1), lwd=2, cex=2, pch=20, ylim=c(min(means)*0.975, max(means)*1.025), xlab="gender", ylab="shoesize", xaxt="n") axis(1,c(0,1),c("female","male")) lines(c(0,1),means[,2],type='o',col='orange',lwd=2,cex=2,pch=20) lines(c(0,0),c(means[1,1]-sems[1,1],means[1,1]+sems[1,1]),col="skyblue",lwd=2) lines(c(0,0),c(means[1,2]-sems[1,2],means[1,2]+sems[1,2]),col="orange",lwd=2) lines(c(1,1),c(means[2,1]-sems[2,1],means[2,1]+sems[2,1]),col="skyblue",lwd=2) lines(c(1,1),c(means[2,2]-sems[2,2],means[2,2]+sems[2,2]),col="orange",lwd=2) legend("topleft",c("CogSci","PsySci"),col=c("skyblue","orange"),lwd=2) interaction.plot(dat$gender, dat$affil, dat$shoesize, pch=c(20,20), col=c("skyblue","orange"), xlab="gender", ylab="shoesize", lwd=3,type='b',cex=2, trace.label="Affiliation") dat.aov=aov(shoesize~gender*affil, data=dat) dat.aov.sum=summary(dat.aov) # testing simple main effect of gender means<-tapply(dat$shoesize, list(dat$gender,dat$affil), mean) SS_gen_CS<- 5*(means[2,1]^2 + means[1,1]^2 -0.5*sum(means[,1])^2) # SS_gender CS SS_gen_PS<- 5*(means[2,2]^2 + means[1,2]^2 -0.5*sum(means[,2])^2) # SS_gender PS dat.aov.sum=summary(dat.aov) # ANOVA table MSe=dat.aov.sum[[1]][4,3] # MSE from ANOVA table or MSe=0.62 dfE=dat.aov.sum[[1]][4,1] # DF for error or dfE=16 dfG=1 # DF for gender F_gen_CS=(SS_gen_CS/dfG)/MSe # F-value for gender effect given CS F_gen_PS=(SS_gen_PS/dfG)/MSe # F-value for gender effect given PS P_gen_CS=1-pf(F_gen_CS,1,dfE) # p-value for gender effect given CS P_gen_PS=1-pf(F_gen_PS,1,dfE) # p-value for gender effect given PS # testing simple main effect of affiliation SS_affil_F<- 5*(means[1,1]^2+means[1,2]^2-0.5*sum(means[1,])^2) #SS_affil | F SS_affil_M<- 5*(means[2,1]^2+means[2,2]^2-0.5*sum(means[2,])^2) #SS_affil | M dfA=1 # DF for affil F_affil_F=SS_affil_F/dfA/MSe # F-value for affiliation effect | F F_affil_M=SS_affil_M/dfA/MSe # F-value for affiliation effect | M P_affil_F=1-pf(F_affil_F,1,dfE) # p-value for affiliation effect | F P_affil_M=1-pf(F_affil_M,1,dfE) # p-value for affiliation effect | M # ANOVA 2x4 dat<-read.csv("http://www.matsuka.info/data_folder/dktb321.txt") interaction.plot(dat$duration,dat$method,dat$result, pch=c(20,20), col=c("skyblue","orange"), ylab="score", xlab="Duration",lwd=3,type='b',cex=2,trace.label="Method") dat.aov=aov(result~method*duration,data=dat) means<-tapply(dat$result,list(dat$method,dat$duration),mean) ssM_1=5*(sum(means[,1]^2)-0.5*(sum(means[,1])^2)) ssM_2=5*(sum(means[,2]^2)-0.5*(sum(means[,2])^2)) ssM_3=5*(sum(means[,3]^2)-0.5*(sum(means[,3])^2)) ssM_4=5*(sum(means[,4]^2)-0.5*(sum(means[,4])^2)) MSe=mod2.sum[[1]][4,3] DFe=mod2.sum[[1]][4,1] DFm=1 fM_1=(ssM_1/DFm)/MSe 1-pf(fM_1,DFm,DFe) ssD_X=5*(sum(means[1,]^2)-1/4*(sum(means[1,])^2)) ssD_Y=5*(sum(means[2,]^2)-1/4*(sum(means[2,])^2)) DFd=3 fD_X=(ssD_X/DFd)/MSe fD_Y=(ssD_Y/DFd)/MSe 1-pf(fD_X,DFd,DFe) 1-pf(fD_X,DFd,DFe) qv=qtukey(0.95,DFd+1,DFe) hsd=qv*(sqrt(MSe/5)) print(diffM<-outer(means[1,],means[1,],"-")) abs(diffM)>hsd # useful r functions source("http://peach.l.chiba-u.ac.jp/course_folder/tsme2017.R") CRF.tsme(dat.aov, dat)
データ解析基礎論A week11
f=c(24.1,23.9,24.4,24.4,23.5) m=c(25.6,26.1,25.8,25.9,26) G.mean=mean(c(f,m)) ss.total=sum((c(f,m)-G.mean)^2) ss.tr=sum((mean(f)-G.mean)^2)*5+sum((mean(m)-G.mean)^2)*5 ss.error=sum((f-mean(f))^2)+sum((m-mean(m))^2) dat<-data.frame(ssize=c(f,m),gender=c(rep("f",5),rep("m",5))) dat.aov<-aov(ssize ~ gender,data=dat) dat<-read.table("http://www.matsuka.info/data_folder/aov01.txt") dat.aov<-aov(shoesize~club, dat) qT<-qtukey(0.95, 3, 67) HSD<-qT*sqrt((2.243*(1/23+1/24))/2) dat<-read.csv("http://www.matsuka.info/data_folder/dktb312.txt", col.names=c("dump","method","result")) levels(dat$method)<-c('free','repeat','sentence','image') dat.aov<-aov(result~method, data=dat) summary(dat.aov) dat.means<-tapply(dat$result,dat$method,mean) cont=c(-3,1,1,1) bunshi=sum(cont*dat.means) bunbo=sqrt(5.29*(sum((cont^2)/8))) t.value=bunshi/bunbo 2*(1-pt(t.value,28)) dat.means<-tapply(dat$result,dat$method,mean) cont=c(-3,1,1,1) bunshi=sum(cont*dat.means) bunbo=sqrt(5.29*(sum((cont^2)/8))) F.value=(bunshi/bunbo)^2 new.F=3*qf(0.95,3,28)